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ABSTRACT 

1 

The problem of s t a t i s t i c a l l y  descr ib ing  a spray imme- 

d ia te ly  af ter  formation and during subsequent propagation 

i s  i n v e s t i g a t e d  bo th  t h e o r e t i c a l l y  and experimental ly .  

P a r t i c u l a r  emphasis i s  placed(-on t h e  pb les  of drop v e l o c i t y  

and p o s i t i o n  i n  the  spray i n  a d d i t i o n  t o  t h e  usual  con- 

s i d e r a t i o n s  o f  drop s i z e .  

I n  order  t o  provide a phys ica l  context  f o r  the theo-  

r e t i c a l  p resen ta t ion ,  observed spray c h a r a c t e r i s t i c s  and 

s i n g l e  drop behavior a r e  reviewed. The f a c t s  that  ( a )  

spray formation i s  a random process  which i s  d i s t r i b u t e d  

i n  space, and ( b )  each ind iv idua l  drop h i s t o r y  i s  a unique 

funct ion  of i t s  i n i t i a l  condi t ions  and la te r  environment; 

lead t o  t h e  hypothesis  that immediately a f te r  spray f o r -  

mation the  d rop le t  v a r i a b l e s  of ve loc i ty ,  pos i t ion ,  and 

temperature should be considered as s t a t i s t i c a l l y  d i s t r i -  

buted along wi th  drop s i z e .  

An available adap ta t ion  of molecular s t a t i s t i c a l  

mechanics t o  the  spray problem i s  presented  and extended 

i t o  inc lude  d r o p l e t  temperature i n  a d d i t i o n  t o  s i z e ,  

pos i t ion ,  and v e l o c i t y .  Equations of change, developed 

from the  spray t r a n s p o r t  equation, de f ine  mean spray v a r i -  

ables. The r e l a t i o n s h i p  of the genera l  d e n s i t y  func t ion  

t o  a v a i l a b l e  spatial and f l u x  s i z e  d i s t r i b u t i o n s  i s  given, 

and an assessment of r equ i red  experimental  

made. 

information i s  

. ,  

, 
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I 

The development of double-exposure, fluorescent 

photography for the purpose of measuring velocities and 

sizes of individual drops at selective locations in a 

spray is described. 

formed by a swirl atomizer form the basis for construction 

of bivariate, size-velocity density functions at various 

radial and axial positions. From the measurement of thq 

sizes and velocities of more than 32,000 drops, both for- 

mation and propagation characteristics are given for the 

ethyl alcohol spray at an injection pressure of 25 psig. 

Formation behavior at two other pressures, 40 and 55 psig, 

is included. Bivariate, size-velocity mass densities, 

their associated single variable distributions, and mean 

quantities are calculated. 

one-dimensional forms obtained by integration over a 

cross section are shown. 

Data taken on an unconfined spray 

Both local variations and 

Conclusions from the experiments are: (a) drop ve- 

locity in a spray is a statistically distributed variable 

the knowledge of which is equally important to drop size; 

(b) the form of the bivariate, size-velocity density \. 

functions is strongly dependent on position with the key 

feature determining the variations being the amount of 

droplet-gas interaction that has occurred; (c) bimodal 

t 
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d e n s i t y  func t ions  are formed during propagat ion by se lec-  

t i v e  d e c e l e r a t i o n  of drops according t o  s i ze ;  and (d)  i n  

many cases  the d i f f e r e n c e s  i n  the shape and modal charac- 

t e r i s t i c s  of spatial and f l u x  drop s i z e  d i s t r i b u t i o n s  are  

large. The impl ica t ions  of  these conclusions f o r  the in-  

t e r p r e t a t i o n  of spray data, a n a l y t i c a l  d e s c r i p t i o n  of 

spray s i t u a t i o n s ,  and design of  f u t u r e  experiments a r e  

d iscussed .  
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INTRODUCTION TO THE PROBLEM OF SPRAY DESCRIPTION 

The f requent  p r a c t i c a l  problem of having a continuous 

volume of l i q u i d  which must be f i n e l y  d i s t r i b u t e d  through- 

out a reg ion  of space g ives  r i s e  t o  the  s t u d i e s  of co l l ec-  

t i o n s  of large numbers of l i q u i d  d r o p l e t s  c a l l e d  a spray.  

The r e s u l t i n g  t h e o r e t i c a l  and experimental  problems of 

choosing, r e l a t i n g ,  and measuring v a r i a b l e s  which quant i-  

t a t i v e l y  descr ibe  a spray i s  the sub jec t  of t h i s  i n v e s t i -  

ga t  ion .  

For purposes o f  d i scuss ion  the  range of spray s t u d i e s  

may be divided i n t o  two genera l  areas as i l l u s t r a t e d  i n  

F ig .  1. The f irst  of these, spray formation, i s  concerned 

w i t h  the  processes  i n  which l i q u i d  i n  a r e s e r v o i r  passes  

through an atomizer and d i s i n t e g r a t e s  t o  form a spray. 

The ob jec t  of studying t h i s  phenomenon I s  t o  c h a r a c t e r i z e  

the r e s u l t i n g  c o l l e c t i o n  of d r o p l e t s  given t h e  i n i t i a l  

condi t ions  of f l u i d  p roper t i e s ,  atomizer geometry, energy 

addi t ion ,  and p r o p e r t i e s  of the medium i n  which the  spray 

i s  formed. A second area,  that  of spray propagation, in-  

volves the  p r e d i c t i o n  and measurement of changes i n  spray 

p r o p e r t i e s  due t o  t r a n s f e r  processes  i n  t h e  two-phase flow 

downstream. The conceptual boundary separa t ing  t h e s e  two 

regimes may be c a l l e d  the su r face  of formation. A quan t i t a-  

t i v e  d e s c r i p t i o n  o f  the  spray a t  t h i s  i n t e r f a c e  i s  the  end 

po in t  of formation s t u d i e s  and t h e  i n i t i a l  condi t ion  f o r  

propagation s t u d i e s .  The method of desc r ib ing  the spray a t  

the  su r face  of formation and some a s p e c t s  of i t s  subsequent 
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Fig. 1. - Formation - Propagation Classification of Spray Studies. 
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propagat ion w i l l  r e c e i v e  most of the  emphasis i n  the  d i s -  

cussion which fa l lows.  

I n  the hundreds of spray s t u d i e s  which have been con- 

ducted over t h e  past century (Refs .  1, 2 j ) , ' d r d p & @ t  S ize  

has received t h e  most emphasis as the key v a r i a b l e  i n  spray 

d e s c r i p t i o n .  Since t h e  atomizat ion process  i s  random (See 

d i scuss ion  i n  Chapter ) and l a r g e  numbers of d i f f e ren t  

s i zed  d r o p l e t s  a r e  formed, a s t a t i s t i c a l  t reatment  i n  

terms of a s i z e  d i s t r i b u t i o n  and assoc ia ted  means of the 

d i s t r i b u t i o n  i s  used. While large numbers of drop s i z e  

d i s t r i b u t i o n s  have been measured, very l i t t l e  progress  has 

been made toward t h e i r  t h e o r e t i c a l  p r e d i c t i o n  from i n i t i a l  

cond i t ions .  Ambiguities and con t rad ic t ions ,  which are 

common wi th in  the  body of s i z e  data, are most o f t e n  blamed 

on experimental  d i f f i c u l t i e s  i n  s i z e  measurement. Perhaps 

equal  sources of t h e  confusion stem from the common f a i l -  

u r e s  to f u l l y  spec i fy  the  condi t ions  under which t h e  data 

were taken or to p lace  the experimental  e f f o r t  wi th in  some 

sort of conceptual framework, such as the  formation- 

propagat ion scheme j u s t  discussed.  

I n  s p i t e  of these shortcomings, empi r i ca l ly  corre-  

lated spray data have cont r ibuted  i n  s e v e r a l  areas. Nota- 

b l e  examples are the  f i e l d s  of combustible mixture forma- 

t i o n  from l i q u i d  f u e l s  ( sp ray  combustion, Ref. 3) and 

chemical process  s t u d i e s  (spray drying, R e f .  4 ) .  A p a r t i c -  

u l a r l y  u s e f u l  combustion a p p l i c a t i o n  i s  the c a l c u l a t i o n  of 
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rocket  combustion chamber l eng ths  and e f f i c i e n c i e s  based 

on a spray  vapor iza t ion  model ( R e f .  5 ) .  

But s o l u t i o n s  t o  many problems of i n t e r e s t  r e q u i r e  

more d e t a i l e d  spray data and more s o p h i s t i c a t e d  spray theo- 

r ies .  For  example, t reatment  of the unsteady spray proc- 

esses occurr ing  i n  a diesel  engine ( R e f .  6 )  i s  r e s t r i c t e d  

by t h e  na tu re  of e x i s t i n g  spray desc r ip t ions ;  and t h e  

problem of avoiding rocket  combustion i n s t a b i l i t y  (Ref.  7 )  

makes a c l o s e r  examination o f f  spat ial  p a t t e r n s  a f  spray 

propagat ion necessary.  Consequently, a reeva lua t ion  of 

spray data and theory  i s  ind ica ted  so that complex s i t u a -  

t i o n s  such as t h e s e  may be more s a t i s f a c t o r i l y  handled. 

It should be noted tha t  many f e a t u r e s  of the  spray 

propagation processes  a r e  common t o  o t h e r  two-phase, gas- 

p a r t i c l e  flows. One example of cu r ren t  i n t e r e s t  i s  the 

d e s c r i p t i o n  of  the flow of burning metal p a r t i c l e s  through 

the  chamber o f  a so l id- fue led  rocket  mokor (Ref. 8 ) .  

Here, a l s o ,  the b a s i c  system considered i s  a c o l l e c t i o n  of 

a l a r g e  number of p a r t i c l e s  which i n t e r a c t  with a gaseous 

medium (or w i t h  each o t h e r )  by undergoing a c c e l e r a t i o n  and 

change of phase. Thus, c l a r i f i c a t i o n  of the  v a r i a b l e s  de- 

s c r i b i n g  a spray should f i n d  wider a p p l i c a t i o n .  

A s  i nd ica ted  above, the d rop le t  s i z e  (mass) i s  t h e  

v a r i a b l e  which has rece ived  the most a t t e n t i o n .  Another 

dynamic v a r i a b l e  necessary t o  desc r ibe  p a r t i c l e  motion, 

d rop le t  v e l o c i t y  (momentum), has been l a r g e l y  neglected.  

Some measurements of drop v e l o c i t y  have been made ( R e f s .  9, 
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10, 11, 12), but  v e l o c i t y  has not  been purposely treated 

as a random v a r i a b l e  on an  equal  s t a t i s t i c a l  basis w i t h  

drop s i z e .  Ins tead ,  data have been i n t e r p r e t e d  on the  sup- 

p o s i t i o n  that drops of a given s i z e  a l l  move w i t h  the  same 

v e l o c i t y  at a given loca t ion .  T h i s  assumption was not made 

i n  the  development of a spray theory  based on an adap ta t ion  

of s t a t i s t i c a l  mechanics (Ref. 13) .  However, a p p l i c a t i o n s  

of the theory  ( R e f .  1 4 )  have r e v e r t e d  t o  o l d  assumptions, 

i . e . ,  a l l  d r o p l e t s  have the same v e l o c i t y  o r  a s i n g l e  s i z e  

has a s i n g l e  v e l o c i t y .  Such s i m p l i f i c a t i o n s  f o r  the sake 

of mathematical convenience or l ack  of experimental  i n f o r -  

mation tend t o  n u l l i f y  the  p o t e n t i a l  f o r  f u r t h e r  under- 

s tanding  o f fe red  by t h e  genera l  s t a t i s t i c a l  formulat ion.  

I n  order  t o  c l a r i f y  the  r o l e  of drop v e l o c i t y  as a 

spray v a r i a b l e ,  measurements of v e l o c i t y  and s i z e  were made 

a t  va r ious  l o c a t i o n s  i n  a spray  and the data were analyzed 

i n  terms of a genera l  s t a t i s t i c a l  mechanical model. Spe- 

c i f i c  g o a l s  were: (1) t o  assess the  phys ica l  j u s t i f i c a t i o n  

f o r  t r e a t i n g  v e l o c i t y  as a random v a r i a b l e  i n  a manner s i m -  

i l a r  t o  drop s i z e ;  and ( 2 )  t o  determine the impl ica t ions  of 

such a model f o r  ( a )  i n t e r p r e t a t i o n  of previous s i z e  meas- 

urements, ( b )  t h e  des ign  of f u t u r e  experiments, and ( c )  t he  

a n a l y t i c a l  s imula t ion  of spray s i t u a t i o n s .  The d i f f i c u l -  

t i e s  i n  measuring Wzes add v&ltiob&t$es add &he l a r g e  number 

of measurements r equ i red  precluded extens ive  v a r i a t i o n s  i n  

experimental  parameters aimed a t  obta in ing  genera l  c o r r e l a-  

t i o n s .  Rather, t h e  experiment was explora tory  i-n na tu re  



w i t h  the goa l  of e s t a b l i s h i n g  q u a n t i t a t i v e l y  the  cha rac te r  

of a p a r t i c u l a r  spray  s i t u a t i o n .  

Chapter I begins by summarizing the observed phys ica l  

condi t ions  that a model must desc r ibe  and t h e  t h e o r e t i c a l  

impl ica t ions  of these experimental  f a c t s .  Against t h i s  

background, the adap ta t ion  of molecular s t a t i s t i c a l  rne- 

chanics  t o  sprays ( R e f .  13) i s  presented  and discussed i n  

Chapter 11. The experimental  methods used t o  meamre a ize -  

v e l o c i t y  d i s t r i b u t i o n s  are explained i n  Chapter I11 along 

w i t h  data reduc t ion  methods. Chapter I V  p resen t s  the  meas- 

u rea  d i s t r i b u t i o n s  and assoc ia ted  means and regress ion  

curves which i l l u s t r a t e  t h e  comprehensive cha rac te r  of t h e  

s t a t i s t i c a l  model. F ina l ly ,  i n  Chapter V, t h e  conclusions 

regarding  t h e  r o l e  of d rop le t  v e l o c i t y  i n  spray d e s c r i p t i o n  

a r e  summarized. 



7 

Chapter I 

A PHYSICAL DESCRIPTION OF THE SPRAY SITUATION 

Before launching i n t o  the  d e s c r i p t i o n  of a d e t a i l e d  

model of spray behavior,  it i s  appropr ia t e  t o  review ob- 

served spray condi t ions  and consider  the  impl ica t ions  they  

have f o r  t h e o r e t i c a l  a n a l y s i s .  An o v e r a l l  examination of  

a spray and i t s  formation c h a r a c t e r i s t i c s  i s  made. The ob- 

j e c t i v e s  a r e  t o  de f ine  the  phys ica l  context wi th in  which a 

spray theory  app l ies  and t o  e s t a b l i s h  some genera l  goa l s  of 

the  theory.  A s e t  of spray v a r i a b l e s  i s  chosen and samples 

of more detai led spray measurements are presented t o  demon- 

strate t h e  need f o r  a s t a t i s t i c a l  t rea tment .  Next, the 

behavior of s i n g l e  d r o p l e t s  moving i n  environments similar  

t o  those  found i n  sprays i s  reviewed. This  type o f  i n f o r -  

mation, which must -be b u i l t  i n t o  a s t a t i s t i c a l  spray model, 

i s  i l l u s t r a t e d  by c a l c u l a t e d  h i s t o r i e s  f o r  condi t ions  s i m i -  

la r  t o  those  e x i s t i n g  i n  the sprays where measurements were 

made. F ina l ly ,  the  c h a r a c t e r i s t i c s  of a spray model de- 

manded by t h e  phys ica l  observa t ions  are summarized. 
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A ,  Experimental Observations and Their  

Theore t i ca l  Impl ica t ions .  

The deta i l s  o f  spray formation may only be seen 

w i t h  the  a i d  o f  high speed photography, i. e . ,  exposure 

t imes s h o r t  compared to the  t i m e  r equ i red  f o r  the  l i q -  

u id  masses t o  move d i s t a n c e s  equal t o  t h e i r  dimensions 

of i n t e r e s t .  Since many of the d r o p l e t s  formed are 
6 small (1Oy s 4 ~ 1 0 - ~  i n . ) ,  maximum v e l o c i t i e s  of 10 

lo7 diameters pe r  second occur.  

graphic  methods must be pushed t o  t h e i r  tkchn ica l  

l i m i t s  t o  r e s o l v e  the  de ta i l s  of spray events  i n  space 

to 

Consequently, photo- 

and t ime. 

1. Flow Regimes i n  the Spray S i t u a t i o n  

Figure 2 i s  a photograph of the  atomizat ion con- 

d i t i o n s  produced by a s w i r l  a tomizer .  It i s  a s p e c i f i c  

example of t h e  condi t ions  descr ibed schemat ica l ly  i n  

F ig .  1. The p i c t u r e ,  which i s  a c ross  s e c t i o n a l  view 

i n  a t h i n  p lane  pass ing  through the  spray ax i s ,  was 

taken by a double-exposure, f luorescen t  method which 

w i l l  be descr ibed i n  Chapter 111. Features  common t o  

a l l  a tomizers  which form l i q u i d  s h e e t s  are shown. The 

wave s t r u c t u r e  on the  su r face  of t h e  hollow l i q u i d  cone 
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I 
Propagat ion 
region 

format ion 

Format ion 
region 

Fig. 2. - Specif ic  example of spray farmation f c h p o s t t e  double exposure 

f luorescent  photograph). 
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is clearly visible. 

downstream until the sheet tears into ligaments. The 

intermittent tearing produces groups of ligaments which 

break into clusters of globules and finally form drops. 

The identity of the droplet "waves" is then destroyed 

by drag mechanisms acting during downstream propagation. 

While wave formation plays a less obvious role in the 

Wave amplitude grows with distance 

case of atomizers not producing thin liquid sheets, the 

gross behavior in terms of disturbance growth, ligamenta- 
* tion and drop formation is similar. 

Several features of the atomization conditions shown 

in Fig. 2 illustrate the physical interpretation of the 

terms "spray" and 11 surface of formation" used in the intro- 

duct ion. Imp 1 ic i t in the definition of a as a col- 

lection of liquid droplets is the assumption that a droplet 

is approximately spherical, or that one characteristic di- 

mension of the droplet is sufficient to describe its mass 

and dynamic behavior. In practical terms this means that 

at some downstream distance where spray formation is con- 

sider-ed to be complete, the occurance of highly aspherical 

globules such as dumbbell shapes is rare. The term "sur- 

face of formation" refers t o  the locus of downstream dis- 

tances where this condition is first satisified. For con- 

venience the surface of formation is indicated as a plane 

in Fig. 2. 

See Refs. 3 and 15 where observatLons of atomization * 
processes are summarized. 
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I n  t h i s  context ,  d e s c r i p t i o n  of details wi th in  the 

formation zone where l i q u i d  masses having h ighly  i r r e g u l a r  

shapes e x i s t ,  i s  o u t s i d e  the realm of spray theory .  I n  

many a p p l i c a t i o n s  t h i s  l i m i t a t i o n  i s  minimized. 

a tomizers  a r e  u s u a l l y  operated a t  flow rates and energy 

i n p u t s  such that the  breakup length,  t he  dimension char-  

a c t e r i z i n g  the formation space, i s  small i n  comparison t o  

t h e  l e n g t h  of the e n t i r e  spray path s tud ied .  If ,  on the  

o t h e r  hand, processes  such as vapor iza t ion  o r  combustion 

P r a c t i c a l  

occur i n  the  formation zone a t  r a t e s  which are a substan-  

t i a l  f r a c t i o n  of the  l i q u i d  Tlow rate; the  a p p l i c a b i l i t y  

of spray theory  t o  the  o v e r a l l  flow process  w i l l  be l i m -  

i t e d .  I n  that  case boundary condi t ions  a t  the su r face  of 

formation must be obtained from a more genera l  theory  of 

l i q u i d  mass removal and d i s p e r s i o n  (as y e t  nonex i s t an t )  

which can Clescribe g r e a t l y  d i s t o r t e d  l i q u i d  g lobules  and 

l igaments.  

Within these l i m i t a t i o n s ,  the g o a l s  of spray theory  

may be s t a t e d  as follows: 

type of f u n c t i o n a l  r e l a t i o n s h i p  necessary t o  quabt i tah  

t i v e l y  desc r ibe  a spray  a t  the  su r face  of formation ( t h e  

d e s c r i p t i o n  problem); ( b )  t o  p r e d i c t  t h e  f u n c t i o n a l  rela-  

t i o n s h i p  from a knowledge of i n j e c t i o n  parameters ( the 

formation problem); ( e )  given t h i s  i n i t i a l  f u n c t i o n a l  re- 

l a t i o n s h i p ,  t o  develop equat ions which desc r ibe  t h e  change 

i n  the  func t ion  downstream (the propagat ion problem). 

( a )  t o  choose the  v a r i a b l e s  and 



i2 

The choice of v a r i a b l e s  t o  be considered i s  r e l a t i v e l y  

s t raight  forward. A complete dynamic d e s c r i p t i o n  of par- 

t i c l e  motion involves a knowledge of momentum and p o s i t i o n  

of a p a r t i c l e  at  any t i m e .  Thus, drop diameter D, veloc-  

i t y  1, and p o s i t i o n  - x are obvious choices .  

Most sprays of i n t e r e s t  e x i s t  i n  a gaseous medium 

charac te r i zed  by a d e n s i t y  pg, p ressure  p, temperature 

Tg and v e l o c i t y  - u. T h i s  means a spray problem i s  in-  

h e r e n t l y  a two-phase, mixture problem. With energy ex- 

* 

change occurr ing  between l i q u i d  and gas,  a measure of 

d rop le t  i n t e r n a l  energy i s  requi red .  The d r o p l e t  tempera- 

ture TL, i s  u s u a l l y  s u f f i c i e n t .  I n s i g h t  i n t o  the  type  of 

func t ion  r e l a t i n g  t h e s e  v a r i a b l e s  i n  a spray i s  gained by 

considering more detai led experimental  observa t ions .  

2. Random Nature of Spray Processes.  

Photographs such as Fig.  2 taken a t  o the r  times while  

c a r e f u l l y  holding spray parameters** constant  are similar 

i n  c h a r a c t e r  but d i f f e r e n t  i n  de ta i l .  I n  p a r t i c u l a r ,  i f  

the  va lue  of some spray proper ty  i s  cont inuously monitored 

x I n  many ins tances ,  more than  one chemical spec ies  i s  
present  i n  the  gas and/or the  l i q u i d  phases. 
spec i fy ing  chemjxal. composiiition must then  be included.  

Variables 

** Spray parameters are a.11 q u a n t i t i e s  under the  con- 
trol of the  opera to r  (experimenter)  i n  a spray s i t u a t i o n .  
Examples of such q u a n t i t i e s  which may be known and va r i ed  
a t  w i l l  are l i q u i d  flow r a t e ,  i n i t i a l  f l u i d  p r o p e r t i e s ,  
and geometries of the nozzle  and the  conta in ing  vesgel .  
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w i t h i n  a small spatial volume of the  spray, a r e s u l t  such 

as that shown i n  Fig .  3 i s  obtained.  The spray proper ty  CP 

which i s  a func t ion  of  the  d r o p l e t  v a r i a b l e s  I'i undergoes 

random f l u c t u a t i o n s  about i t s  mean @, i n  a manner analo-  

gous to v e l o c i t y  f l u c t u a t i o n s  i n  tu rbu len t  flow. The phys- 

- 

i c a l  meaning of random i n  t h i s  case i s  as follows: A l -  

though a l l  spray parameters are con t ro l l ed  i n  the same 

known manner, success ive ly  measured h i s t o r i e s  of CP are 

never t h e  same (Ref. 1 6 ) .  The randomness i s  a r e s u l t  of 

the  i n a b i l i t y  of the  opera tor  t o  con t ro l  the deta i ls  of 

each drop formation process .  P r a c t i c a l l y  speaking a sta- 

t i s t i c a l  t reatment  i s  requ i red  when CP alone cannot quan- 

t i t a t i v e l y  desc r ibe  the spray t o  t h e  desired accuracy. 

The f a c t  that  z(t) i s  not  a constant  i n  Fig.  3 implies  

tha t :  ( a )  some spray parameters were sys temat ica l ly  

changed during the  measurement o r  (b )  p a r t i c u l a r  f i x e d  

va lues  of t h e  parameters r e s u l t e d  i n  some s o r t  of  resonant  

phenomena i n  t h e  spray system. I n  e i t h e r  case,  o v e r a l l  

( large s c a l e )  unsteady v a r i a t i o n s  i n  mean spray p r o p e r t i e s  

are produced. 

c 

* 

Although continuous t i m e  h i s t o r i e s  of spray p r o p e r t i e s  

have rarely been measured and repor ted ,  two a v a i l a b l e  

* The " c o e f f i c i e n t  of v a r i a t i o n"  ( i n t e n s i t y  of turbu-  
lence )  given by o@,/@ i s  one i n d i c a t i o n  of the degree of  
randomness. The va lue  04: t h i s  p a t i o  f o r  which random ef- 
f e c t s  become o p e r a t i o n a l l y  s i g n i f i c a n t  i s  obviously rela;.' 
t i v e  t o  the  degree of de ta i l  sought. 
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t 

@(I'i,t) is  a property of the spray defined per uni t  of the 
spray variables Ti a t  a time t. e.g., If Pi  = E, 
(z,(st) is  the number of drops per uni t  volume. 

Approximate operational definit ions of the mean (z, and 
- 

standard deviation G ~ :  

6 t  t'+F 
a(ri , t)  at - 1  

6 t  
2 

mere:  6 t  is long compared t o  the most rapid fluctuations 
i n  @ but short  compared t o  changes i n  spray 
parameters or - periods of resonant osci l la t ion.  
In  general @ and oQj may be functions of t' 
and 6t. 

Fig. 3. - Schematic Result of Continuous Spray Sampling. 
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examples are shown i n  Fig.  4. The measurements were per- 

formed on sprays formed by impinging j e t s  w i t h  i n j e c t i o n  

parameters he ld  constant  ( s teady- sta te) .  I n  the  first 

case ( R e f .  1 7 )  a l i g h t  beam was pa.ssed through the spray  

and t h e  t r ansmi t t ed  p o r t i o n  was monitored by a phototube. 

The r e s u l t i n g  s i g n a l  (F ig .  4 ( a ) )  which i s  propor t ional  t o  

t h e  i n t e n s i t y  o f  t h e  unobstructed beam i s  a very rough 

measure of the  amount (p ro jec ted  a r e a )  of  l i q u i d  occupying 

t h e  l i g h t e d  volume. More quanta t ive  data were obtained 

(Ref. 18) by using a photographic technique, which approx- 

imated continuous sampling f o r  t h e  larger drops, t o  measure 

spat ial  d e n s i t i e s  i n  s p e c i f i e d  s i z e  ranges (Fig .  4 ( b ) ) .  

Whether the  records  appear t o  vary i n  a continuous o r  d i s -  

c r e t e  manner depends on t h e  d e f i n i t i o n  of the  p a r t i c u l a r  

spray proper ty  and the  way i n  which it was measured. The 

noisy" p a t t e r n s  c h a r a c t e r i s t i c  of random processes  are 11 

apparent i n  t h e s e  records .  

Rather than  continuous t i m e  h i s t o r i e s  of spray prop- 

ert ies ,  most of t h e  d e t a i l e d  spray  data a v a i l a b l e  c o n s i s t  

of var ious  forms of drop s i z e  d i s t r i b u t i o n s .  A common 

method of es t imat ing  a s i z e  d i s t r i b u t i o n  i s  t o  i n s t a n t a-  

neously sample the  spray photographical ly  w i t h  no attempt 

t o  o b t a i n  a continuous sample as i n  F ig .  4 ( b ) .  Ari ex- 

ample of t h i s  type of data ( R e f .  1 9 )  i s  given i n  Fig .  5 

where t h e  spray  d e n s i t y  ( the  mass of l i q u i d  pe r  u n i t  spa- 

t i a l  volume pe r  u n i t  diameter)  i s  p l o t t e d  as a func t ion  of 

drop s i z e  and p o s i t i o n  i n  the  spray. Spray parameters were 
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-ri 
GI 1 I 

0 15 30x10-3 
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( a )  Phototube Output Obtained when Liquid Obstructs a 
Light Beam Passing Through a Spray Formed by 
lmpinging Jets (Ref. 17).  

Size range, microns 

400 t o  566 

283 t o  400 

0 2 4 6 
t, sec 

(b) Number of Drops i n  a Flxed Size Range 
and Spat ial  Volume as a F’unction of 
Time (Ref. 18). 

Fig. 4. - Examples of Measured Time Histories of Spray 
Properties. 
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Fig. 5. - Spray Density Distributions as a Function of Drop Size and 
Position i n  a Spray Formed by a Swirl Nozzle. 
Correlation i n  Ref. 19.) Constant Downstream Distance z = 1.25 in. 

(Data from the  
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held cons tan t '  ( s t eady- s ta te  i n j e c t i o n )  and ins tantaneous  

photographs of drop)ets  i n  a known spatial volume were 

taken a t  random i n t e r v a l s  i n  t i m e .  Categorized data from 

many photographs were weighted by the  d rop le t  mass and cor- 

r e l a t e d  as shown. 

This type of spray measurement may be regarded as 

sampling a t  i n s t a n t s  of t i m e  from a large c o l l e c t i o n  of 

records  such as tha t  of Fig.  3 .  The c o l l e c t i o n  of a l l  * 

p o s s i b l e  records  i s  c a l l e d  the  ensemble and w i l l  be d i s -  

cussed i n  more d e t a i l  i n  Chapter 11. I n  sappl ing from the 

ensemble t h e  opera t ion  shif ts  from one of f i x i n g  spray 

v a r i a b l e s  Ti and measuring t i m e  v a r i a t i o n s  t o  f i x i n g  

t i m e s  and counting f requencies  of occurrance of the  v a r i -  

ous ri. I n  the  case of* 'F ig .  5 t h e  i f ' i  were s p e c i f i c a l l y  

the  s i z e  D ,andrpO$ib8on- Whkk are random, varXab3es 

t ak ing  on the  p a r t i c u l a r  va lues  i n  t he i r  range of d e f i n i -  

t i o n  w i t h  varying f requencies .  

A ques t ion  remains as t o  how the  o t h e r  two d rop le t  

v a r i a b l e s ,  - v and TLy should be treated. Experimental 

evidence j u s t  reviewed i n d i c a t e s  tha t  the  spray formation 

processes  are d i s t r i b u t e d  i n  space, are random i n  nature,  

and r e s u l t  i n  a d r o p l e t  populat ion randomly d i s t r i b u t e d  

w i t h  r e spec t  t o  s i z e  and l o c a t i o n .  Such observat ions  

* For a s teady- sta te  condi t ion  there  i s  no beginning 
o r  end f o r  a record  and thus  no f i x e d  t i m e  r e fe rences  are 
a v a i l a b l e .  
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s t r o n g l y  suggest that d rop le t  v e l o c i t i e s  a t  t h e  su r face  of 

formation should be regarded as randomly d i s t r i b u t e d  about 

a mean which i s  not n e c e s s a r i l y  the  mean i n j e c t i o n  veloc-  

i t y .  A t h e o r e t i c a l  formulat ion which treats - v i n  t h i s  

manner, and experimental  data which support  such a treat-  

ment are of primary concern i n  the  d i scuss ions  presented  

i n  l a t e r  chapters .  The l ack  of an experimental  technique 

t o  measure i n d i v i d u a l  d rop le t  temperatures  i n  a spray pre- 

vented a similar  i n v e s t i g a t i o n  of TL. 

A s  f a r  as the  v a r i a b l e s  desc r ib ing  t h e  gas phase are 

concerned, l i m i t i n g  the  cons idera t ion  t o  d i l u t e  sprays 

al lows the gas t o  be descr ibed by l o c a l  mean va lues  of t h e  

p r o p e r t i e s .  The l i q u i d  volume f r a c t i o n  V,  which i s  the  

r a t i o  of volume occupied by the l i q u i d  t o  t h e  volume oc- 

cupied by the mixture of l i q u i d  p lus  gas, i s  a measure of 

spat ia l  di lutemess.  It may be used t o  c h a r a c t e r i z e  the 

degree d rop le t- drop le t  i n t e r a c t i o n s  as  w e l l  a$ d rop le t-  

gas i n t e r a c t i o n s .  Small volume f r a c t i o n s  imply that sta- 

t i s t i c a l  f l u c t u a t i o n s  induced i n  the gas p r o p e r t i e s  by the  

f l u c t u a t i n g  d rop le t  popula t ion  can be ignored. 

Because of the  experimental  d i f f i c u l i t e s  involved, no 

d i r e c t  measurements of l o c a l  gas P r o p e r t i e s  wi th in  t h e  

spray were made. An attempt w a s  made t o  i n f e r  l o c a l  gas 

v e l o c i t y  from drop v e l o c i t y  measurements. .. 
values  of V measured i n  t h i s  i n v e s t i g a t i o n  were about 

The maximum 

10-2. 
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B. Summary of Single Droplet Behavior 

A statistical mechanical formalism which relates the 

random behavior of the droplet variables D, s, 1, and, 
possibly TL, in a spray logically includes expressions 

f o r  rates of change of these variables as determined from 

the dynamics of a single prop. Thus, the ability to apply 

such a collective description depends to a large extent on 

the degree to which individual drop processes are under- 

stood. 

The single droplet processes considered here are lim- 

ited to droplet-gas interactions, specifically: vaporizai- 

tion, drag, and heat transfer effects. The extreme 

droplet-gas interactions resulting in drop shattering 

(secondary atomization, Ref@. 20, 21, 22) involve statis- 

tical populations of the droplet's fragments whose prop- 

erties remain largely wexplored (Ref. 23). Results bf 

experimental and theoretical study of droplet-droplet in- 

teractions such as trajectory modifying encounters or col- 

lisions resulting in splitting or coalescense are largely 

qualitative or difficult to apply (Refs. 24, 25, 26). For 

a dilute spray, droplet-droplet interaction effects are 

small compared to the droplet-gas effects. 

The development summarized below (Ref. 27) is based 

on empirical correlations for mass, momentum, and heat 

transfer to a drop moving in a gas stream. Details re- 

garding fluid properties, steady- state temperatures, and 

equilibrium vaporization constants are given in Appendix A. 
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1. Governing Equations 

Macroscopic balances app l i ed  t o  a s i n g l e  l i q u i d  drop 

y i e l d  the fol lowing three equations:  

Mass Balance: 

where: 

M = d r o p l e t  mass 

Dv = d i f f u s i o n  c o e f f i c i e n t  

pfL = vapor p ressu re  of l i q u i d  a t  temperature 

Rf = gas constant  f o r  vaporized l i q u i d  

Tm 

TL 

= mean temperature i n  t h e  gas f i l m  

p = s t a t i c  p ressu re  of gas 

01 = - Q - I ~  
P f L  , 

r " e x p r e s s i n g  unid i rec-  , 

t i o a a l  massl, tsaasfer, c1.1 1. 
Nu = Nusselb xnumSs,erl$' &as, transfer 

The system descr ibed  by Eq. (1.1) i s  a l i q u i d  drop vapor- 

i z i n g  i n  an i n f i n i t e  gaseous medium where t h e  concentra-  

t i o n  of t h e  vapor i s  zero at l a r g e  d i s t a n c e s  from the  

l iqu id- gas  i n t e r f a c e .  

Momentum Balance: 

where: 

pg = gas d e n s i t y  

CD = drag c o e f f i c i e n t  

Fb = body f o r c e s  such as g r a v i t y  
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Forces due t o  gradients in gas pressure (Ref. 28) and the 

possibility of vapor leaving the drop at other than drop 

velocity (Ref. 29) have been neglected. 

Energy Balance: 

Using the assumption of infinite conductivity of the liq- 

uid, Eq. (1.3) states that internal energy changes due t o  

heat transfer from the gas t o  the liquid plus the latent 

heat necessary to sustain the current mass transfer rate. 

where: 

= specific heat of the liquid 

= mean thermal conductivity in the gas film 
cPiJ 

k, 
C = correction factor t o  account for heat used to;super- 

heat the diffusing vapor, 0 g 5 5 1. 

Nu = Nusselt number for heat transfer 

hfL = latent heat of vaporization 

Empirical correlations must be used for Nu', CD, and 

Nu. The following are samples of available equations. 

Mass Transfer: Ranz-Marshall (Ref. 30) 

Nu' = 2 + 0.6 Sc1I3Re1l2 m (1.4) 



' ,  
. .  

23 

where: 

ICfL = mass t r a n s f e r  c o e f f i c i e n t  

= mean d e n s i t y  i n  gas f i l m  Pm 
Nu' = DpKf L 

DvPm 
P 

Sc = Schmidt number = - 'm , C1.m = mean v i s c o s i t y  i n  gas f i l m  
PmDv 

P D I v  - - uI. m -  Rem = mean Reynolds number = 
I-lm 

A similar expression was obtained ( R e f .  31) when t h e  e f-  

f e c t s  of d rop le t  shape were considered. 

Momentum Transfer : .  Drag 

A v a r i e t y  of empir ica l  drag data have been obtained 

under condi t ions  ranging from a s i n g l e  s o l i d  sphere i n  

s teady motion t o  an acce le ra t ing ,  vaporizing,  c o l l e c t i o n  

of d r o p l e t s  i n  tu rbu len t  flow (Refs. 19 ,  32 ) .  'Equat ions , 

f o r  drag c o e f f i c i e n t s  covering a range t o  a maximum of 

R e  = lo3 

f o r  comparison w i t h  the  s tandard  s o l i d  sphere curve.  

Values of Reg  e x i s t i n g  i n  t h e  sprays sampled i n  t h i s  

s tudy were less than  100. 

Heat Transfer :  - Ranz-Marshall (Ref. 30) 

a r e  given i n  Table I, and are p l o t t e d  i n  Fig.  6 

1/3 ;L'/2 'Nu = 2 + 0 .6  Pr ,  Rem 

T h i s  i s  the  hea t  t r a n s f e r  analog of Eq: '(1.4) 

where: 

( 1 . 7 )  
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Cbm = mean s p e c i f i c  heat i n  gas 

H = hea t  t r a n s f e r  c o e f f i c i e n t  

f i l m  

Severa l  important r e s t r i c t i o n s  on Eqs. (1.4 t o  1 . 7 )  

should be noted i n  o rde r  t o  assess the v a l i d i t y  of t he i r  

a p p l i c a t i o n .  The Ranz-Marshall equat ions were obtained 

under s t e a d y- s t a t e  condi t ions  but  are app l i ed  a t  succesr  

s i v e  i n s t a n t s  of t i m e  t o  c a l c u l a t e  unsteady d rop le t  h i s-  

t o r i e s  ( R e f  s. 5,  6)  . - Thi ' s  quaqi-s%eady< t F e a t m h L  ,is 

supported by l i m i t e d  experimental  tests (Refs. 33, 34)'. A 

Two s p e c i f i c  l i m i t a t i o n s  imposed by experimental  technique 

were that  i n i t i a l  drop s izes  less than  about 500p and re- 

l a t i v e  v e l o c i t i e s  greater than  about 230 in. /sec could not  

be obtained.  Dif ferences  between measured and c a l c u l a t e d  

* 

h i s t o r i e s  increased  as drop s i z e  and molecular weight of 

the  vaporizing l i q u i d  decreased. 

I n  c o n t r a s t  t o  the  processes  of hea t  and mass t r a n s -  

fer ,  more drag data have been obtained under unsteady con- 

' d i t i o n s  and samples of such expressions are given i n  

.Table I. 

f a c t o r s  such as deformation, acce le ra t ion ,  vapor iza t ion ,  

and gas turbulence  are not easi ly separated experimen- 

t a l l y ]  and d i r e c t  meagurements of s i n g l e  d r o p l e t  t r a  jec-  

t o r i e s  and assoc ia ted  v e l o c i t i e s  r e l a t i v e  t o  the gas 

( R e f .  39)  a r e  rare. The q u a n t i t a t i v e  e f f e c t s  of gas t u r -  

bulence l e v e l s  on a l l  th'ree t r a n s p o r e  processes  

The shortcoming here  i s  that  t h e  m u l t i p l i c i t y  of 
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( R e f .  40( e )  ) need more experimental  i n v e s t i g a t i o n  i n  order  

t o  expl ici t3-y incorpora te  turbulence  effects  i n  t h e  empir- 

i c a l  equat ions.  

2. Droplet  H i s t o r i e s  

* 

Simultaneous s o l u t i o n  of t h e  three nonl inear  ord inary  

d i f f e r e n t i a l  Eqs .  (1.1) t o  (1.3) y i e l d s  mass, ve loc i ty ,  

and temperature h i s t o r i e s  f o r  a d r o p l e t .  Usually, v a r i -  

a t i o n  of f l u i d  thermodynamic and t r a n s p o r t  p r o p e r t i e s  w i t h  

temperature cannot be ignored. I n  a d d i t i o n  t o  t h i s  com- 

p l i c a t i o n ,  t h e  c o r r e l a t i o n s  use averages of the  f l u i d  

p r o p e r t i e s  a c r o s s  the  v a r i a b l e  composition i n  the gas f i l m  

surrounding t h e  drop, and t h e  f a c t o r s  a and < f u r t h e r  

complicate e coupling.' A s  a- result a numeifiicalllsolutidn 

. i s  requ i red .  

I n  o r d e r . t o  i l l u s t r a t e  t he  cha rac te r  of s i n g l e  drop- 

l e t  h i s t o r i e s  and prbvide a p o i n t  of comparison w i t h  t h e  

' exper imenta l  spray condit ions,  numerical s o l u t i o n s  f o r  

e t h y l  a lcohol  d r o p l e t s  i n j e c t e d  i n t o  a i r  a t  atmospheric 

p ressu re  were obtained.  VarTations, of d rop le t  mass, veL 

loci ty , .  and temperature as a func t ion  of d i s t a n c e  t r a v e l e d  

are given i n  Fig.  7 f o r  a l l  i n i t i a l  condi t ions  held con- 

s t a n t  except drop diameter.  The .  c a l c u l a t i o n s  were stopped 

when the mass f r a c t i o n  vaporized'  reached 0.95. 

emphasizes the  f a c t  that due t o  t h e  cubic  r e l a t i o n  between 

Figure 7 (a )  

* For an extens ive  review of gas- par t ic le  flow see 
Refs. 40a t o  40f: 
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(a) Mass Fraction Vaporized and Diameter Ratio. 

Fig. 7. - Calculated Histories for Ethyl Alcohol Droplets Injected into 
Air at Atmospheric Pressure (Drop Size as the Parameter). 
Tg = 535' R, uz = 2.44 z2 - z + 25, a0 = 535' R, Drag Eqs. 1.5a b' l .6 ,  
vzot = 540 in./sec. 

Conditions: 
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(b) Drop Velocity. 

Fig. 7. - Continued. 
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( c)  Droplet Temperature. 

Fig. 7. - Concluded. 



diameter and volume (mass), small changes i n  diameter a r e  

equivalent  t o  much l a r g e r  changes i n  volume. T h i s  s i t u a -  

t i o n  has obvious experimental  r a m i f i c a t i o n s  when s i z e s  are 

measured and masses computed, i . e . ,  errors  are cubed. The 

drag expression used ou t s ide  the  Stokes Law range was 

.G)(which provides f o r  drag c o e f f i c i e n t  inc reases  from 

the s o l i d  sphere curve as t h e  d i s t o r t i o n  parameter Su 

inc reases .  A i r  v e l o c i t y  as a func t ion  of d i s t a n c e  was 

chosen equal  to the  exhaust f a n  v e l o c i t y  which e x i s t e d  i n  

the experiment. Since tiz changed slowly w i t h  z i n  

t h i s  example, d r o p l e t s  dece le ra ted  t o  a i r  v e l o c i t y  and 

* 

then  followed c l o s e l y  w i t h  only small overshoot and lag 

f o r  larger drops {Fig.  7 ( b ) ) .  Two curves of constant  

t r a v e l  times of 1 and 5 mi l l i seconds  have been super- 

imposed on the  f ami ly  of curves t o  g i v e  an added indica-  

t i o n  of r e l a t i v e  p e n e t r a t i o n  as a func t ion  of s i z e .  

Veloc i ty  - d i s t a n c e  curves ca lcu la ted  f o r  s o l i d  spheres  of 

the same i n i t i a l  s i z e  show n e g l i g i b l e  dev ia t ion  from the 

vaporizing case.  T h i s  i s  due t o  the f a c t  that,  under 

t h e s e  - i n i t i a l  condi t ions  and gas environment, the  smaller 

s i zed  drops whose f a s t e r  changing s i z e  would be expected 

t o  e f f e c t  the  t r a j e c t o r i e s  reach  and " lock i n "  w i t h  a i r  

v e l o c i t y  so  quickly  tha t  no dev ia t ions  are allowed. Drop- 

l e t  temperature which was i n i t i a l l y  equal  t o  t h e  gas 

-?+ T h i s  i s  not  t he  behavior of gas v e l o c i t y  i n s i d e ' t h e  
spray due to entrainment as discussed i n  Chapter TV. 
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temperature dkcreases to an approximately constant value, 

TLS, (called the steady-state or wet-bulb temperature) as 

shown in Fig. 7 ( c ) .  

from Eqs. (1.1) and 

. hfL 
= Tg - - cPf 

An expression for TLs is obtained 

(1.3) by setting dTL/dt = 0: 

Since 4 shows only a weak dependence on D and 1 

( i . 8 )  

through the ratio Nu'/Nu, and this dependence decreases 

as Re increases; TLS can be considered t o  be only a 

function of fluid properties. * 

The consequences of considering variable droplet tem- 

perature were investigated. Mass histories for drops 

started at the steady-state temperature are compared with 

the unsteady computations in Fig. 8. Differences are 

largely due to the rack that the vapor pressure of ethyl 

alcohol increases by a factor of 3.5 over the temperature 

range 500' t o  535' R. 

Sensitivity of the trajectories to the drag expres- 

sions used are shown in Fig. 9. Differences between the 

pairs of curves for the same size reflect the behavior of 

the CD against Re (proportional to size) curves shown 

in Fig. 6. 

Another set of conditions which occur frequently in 

practice lead to the type of histories shown schematically 

in Fig. 10. Here gas temperature and velocity are greater 

* See Appendix A for temperature dependent alcohol 
properties and steady-state temperature computation. 
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C2H50H - A i r  
vza = 540 in./sec 
Drag Eq. l.Sa & 1.6 
uZ 2 2.44 Z' - z + 25  

- --- TLO = Tg = 535' R Variable TL 
TLo = Tx = 500' R Constant TL 

Distance, z,  in. 

Fig. 8. - Comparison of Mass Histories  for Variable Droplet Temperature 
t o  Fixed Steady-state Case. 
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Fig. 9. - Comparison of Droplet Trajectories for !Two Drag Expressions. 
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Fig. 10. - Schematic Droplet Histories for: 
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b 

than  i n i t i a l  drop va lues  and thus  d r o p l e t s  heat up and ac- 

c e l e r a t e .  

Within the  framework just out l ined ,  single d r o p l e t  

behavior i s  g iven  by three f u n c t i o n a l  r e l a t i o n s  f o r  rates 

o f  change of mass, momentum, and energy. I n  terms of D, 

-9 v and TL the r a t e  equat ions may be considered as func- 

t i o n s  of t h e  fol lowing arguements: 

- -  (1.9a) 

(1 .9b)  

(1 .9c)  

- TL d r i v e  t h e  drop- 
*g 

The q u a n t i t i e s  pfL, - v - -9 u and 

l e t  toward equi l ibr ium w i t h  the  gas whose ex ten t  i s  con- 

s ide red  s o  great that  gas p r o p e r t i e s  are not  apprec iably  

modified by the d rop le t  t r a n s p o r t  processes .  The e q u i l i b-  

rium condi t ion  approached i s  one where = u and - 
** 

Tg - TLS i s  a cons tant .  Smaller s i z e  means that t h e  

magnitudes of t h e  rates  are g r e a t e r  as shown by a tabula-  

t i o n  of t h e i r  diameter dependence ( s e e  Table 11). Thus 

* 
xD2 d D  

d t , ,  'L 2 ,. d t  
Note that dM. = - - and other  f l u i d  thermo- 

dynamic 'and t r a n s p o r t  p r o p e r t i e s  might be included as 
arguments of the func t ions .  

** An equi l ibr ium s i z e  f o r  a drop e x i s t s  only i f  a - s a t u r a t i o n  cond i t ion  i s  considered, i . e . ,  P& - Pfg 
where pfg i s  the  par t i a l  p ressu re  of the vaporizing 
f l u i d  fa r  from the  drop. 
drop i n  an i n f i n i t e  medium, 

I n  the  above model f o r  a s i n g l e  
= 0.  

pfg 
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small drops quickly reach  v e l o c i t y  and temperature equi-  

l ib r ium w i t h  the  gas; while larger d r o p l e t s  respond more 

slowly, may overshoot due to thermal or mechanical i n e r -  

t i a ,  and may never c l o s e l y  approach equi l ibr ium especi ; t l ly  

when large g r a d i e n t s  i n  and - u e x i s t .  Tg 
Against t h i s  phys ica l  background, seve ra l  cha rac te r-  

i s t i c s  which a spray model should possess  may be summa- 

r i z e d .  A '  s t a t i s t i c a l  mechanics t r e a t i n g  d rop le t  v a r i -  

ables as random i s  requ i red  due t o  t h e  complex and un- 

c o n t r o l l e d  behavior of t h e  drop formation processes .  

With s i n g l e  d rop le t  behavior incorporated as a basis, t h e  

s t a t i s t i c s  must account f o r  the  s i t u a t i o n  where t h e  i n i -  

t i a l  values xo, Do, xo, and perhaps T L ~  f o r  the  drops 

are  s t a t i s t i c a l l y  d i s t r i b u t e d  a t  t h e  su r face  of  formation. 

Coupling e f f e c t s  i n  the flow of t he  gas-droplet  mixture 

must be considered even for d i l u t e  sprays,  and the  f a c t  

that s t a t i s t i c a l  v a r i a t i o n s  i n  gas p r o p e r t i e s  and drop- 

drop i n t e r a c t i o n s  inc rease  w i t h  l i q u i d  concent ra t ions  must 

be r e a l i z e d .  



39 

Chapter I1 

STATISTICAL MECHANICS OF A SPRAY 

A s t a t i s t i c a l  mechanics f o r  sprays has been fo r-  

mulated ( R e f s .  13, 14, 41) by d i r e c t l y  adapt ing the  

concepts and methodology of c l a s s i c a l  molecular sta- 

t i s t i c a l  mechanics (Ref. 42) .  A s  i s  t r u e  of t h e  c l a s-  

s i c a l  model, the spray adap ta t ion  o f f e r s  many phys ica l  

i n s i g h t s  through the  cons idera t ion  13f exterrsLve !de ta i l :  

These conceptual advantages are gained a t  the  p r i c e  of 

great p r a c t i c a l  d i f f i c u l t i e s  i n  attempts t o  apply t h e  

theory  t o  r e a l i s t i c  s i t u a t i o n s .  

The s t r u c t u r e  of t he  theory  as o u t l i n e d  i n  t h i s  

chapter  g e n e r a l l y  fol lows the  previous development 

( R e f s .  13, 14 )  but s p e c i f i c a l l y  d i f f e r s  i n  t h e  f o l -  

lowing ways. Physical  meanings and r e l a t i o n s  o f  equa- 

t i o n s  t o  experimental  observa t ions  r e c e i v e  conqiderable  

emphasis; and t erms involving d rop le t  i n t e r n a l  energy 

as a random v a r i a b l e  are included. T h i s  l a te r  a d d i t i o n  

t o  the theory  remains t o  be experimental ly  j u s t i f i e d  
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and clarified. Comparisons of the mo1,ecular condition 

with the-spray situation are made which point out 

basic physical differences in spite' of formal simrt- 

larities in the analytic descriptions. Their purpose 

is t o  serve as a guide for further interplay between 

the parent microscopic theory and its macroscopic 

offspring. 

The presentation begins with a discussion of the 

spray density function f as one answer to the prob- 

lem of  spray descrlption. Next, a basis for spray 

propagation theory is offered in the transport equa- 

tion for f. From this equation conservation equa- 

tions for liquid, gas, and mixture are obtained and 

mean-spray quantities are defined. Finally, two gen- 

eral approaches to application of the( theory are - 3 . '  

presented and asbessedofn twins af:Iectiatzkng end re- 

quired exper5rnGntal information. 

A. The Density Function f 

Consider a function f( rj,t) which has the fol- 

lowing mathematical and physical interpretation. The 

variables ri are randomly distributed, and, for the 

case of sprays, are chosen as those necessary to de- 

scribe the condition of a droplet. As discussed previ- 
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! 

. ape D,) ~ 

.- 
ously  reasonable  choices  f o r  the 

p o s i t i o n  2, v e l o c i t y  1, and temperature TL. The 

t i m e  t i s  a parameter. The func t ion  f has charac- 

* 

t e r i s t i c s  of both a phys ica l  d e n s i t y  with u n i t s  number 

of drops p e r  u n i t  Ti,  and a p r o b a b i l i t y  d e n s i t y  

s i n c e  it r e p r e s e n t s  t h e  probable number of  drops i n  

the  range d r i  about r i  a t  a t i m e  t .  It i s  not 

a p r o b a b i l i t y  d e n s i t y  func t ion  i n  the  s t r i c t  mat'he- 

ma t i ca l  sense because t h e  normalizat ion has not been 

c a r r i e d  out:  

I . '(2.1) 

where the i n t e g r a l  i s  over t h e  e n t i r e  range of each Ti. 

The n o ~ m a l i z a t ~ . a n , , ~ ' $ C t o r  N: )which is  the - tota;t nuinber of 

-IC. More genera l  choices  of t h e  r k .  would be drop-) 
l e t  mass, momentum and enthalpy s i n c e  these would allow 
l i q u i d  d e n s i t y  de endence on temperature (volumetr ic  
expansion e f f e c t s  P and s p e c i f i c  heat v a r i a t i o n s  w i t h  
temperature t o  be included.  However, the  choices  used 
above are those  v a r i a b l e s  which were experimental ly  
measured ( w i t h  the except ion of TL) .  Also, s i n c e  the  
mass i s  v a r i a b l e ,  it is convenient t o  separate mass and 
v e l o c i t y  i n t o  two terms rather than  use  the  product.  
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cons ide ra t ion .  S p e c i f i c a l l y ,  the  r e s t r a i n t s  take the  form 

of l i m i t a t i o n s  on the range of one o r  more of the (for 

example, 2 

the volume of t h e  system considered);  and s p e c i f i c a t i o n  

of the  va lue  of some func t ion  of f and pi i n  terms of 

spray parameters ( f o r  example, an average value of t h e  

l i q u i d  flow r a t e  a t  the  boundary of the  system). 

course, a p r o b a b i l i t y  d e n s i t y  funct ion,  f' = f / N ,  may be 

used but a complete phys ica l  d e s c r i p t i o n  inc ludes  an ex- 

p l i c i t  s p e c i f i c a t i o n  of N o r  i t s  equavelent i n  terms of 

may be r e s t r i c t e d  t o  a f i n i t e  range t o  de f ine  

Of 

* system parameters.  

The s t a t i s t i c a l  na tu re  of f may be explored by con- 

s i d e r i n g  a c o l l e c t i o n  of sample func t ions  composed of in-  

d iv idua l  h i s t o r i e s  similar t o  t h e  one introduced i n  
Fig.  3. Such a c o l l e c t i o n  i s  shown i n  Fig.  11. The j- t h  

sample func t ion  

of drops i n  the range of v a r i a b l e s  Ti t o  f i  + APT a t  

a t i m e  t .  The c o l l e c t i o n  of  a l l  p o s s i b l e  sample func- 

t i o n s  obtained under i d e n t i c a l  condi t ions  i s  c a l l e d  the  

ensemble o r  sample space. The s p e c i f i c a t i o n  of i d e n t i c a l  

condi t ions  means that a l l  spray  parameters were c o n t r o l l e d  

i n  t h e  sameyimannkr throughout ea'ch :historg,-ahc?a- the 'same 

v a r i a b l e  range pi t o  Ti + A r i  was considered. A 

@(j)(I ' i  + A p i , t )  i s  defined as the  number 

* The  s i t u a t i o n  i s  anaLogorns ;;toL'Elanbk:a.',Law Cor Lthe 
energy d i s t r i b u t i o n  of  black body r a d i a t i o n  as a func t ion  
of wavelength w i t h  temperature as a parameter. The nor-  
mal i za t ion  f a c t o r  i n  t h i s  case  i s  the  t o t a l  energy radi- 
ated a t  a l l  wavelengths (ogT4) and must be included i f  
the  d i s t r i b u t i o n  i s  normalxzed. 
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I I 

0 t' t" 

Fig. 11. - Schematic Rep esentation of a Group 
of Sample Functions # t-1 J (Pi + m i ,  t) which 
together Form a Portion of the Ensemble 
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definition of the density function f for the ensemble 

may be given in terms of a limiting process performed on a 

sum over the ensemble at a given time 6': 

In the particular case when f is independent of time, 

the random process which f describes is said to be sta- 

tionary. Averages (also called moments or expected 

values) of a function 

fined by: 

* 

g (ri,t) over the ensemble are de- 

f 

where the integrals are over the entire range of each 

The brackets < ' >  are used to distinguish the ensemble av- 
erage from a time average denoted by an overbar . For a 

stationary process the ensemble averages are independent 

ri. 

- 

of time. 

Higher order joint density functions may be formed by 

considering the distribution of sets of spray variables 

, .  
particular the second order density \ + ' ,  

* A stationary condition implies that spray parameters 
were held constant to ach5eve a steady state. However, 
holding spray parameters constant does not necessarily 
mean that the random process is stationary since a system 
resonance may occur. 
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f (*)  (ri(1),I?i(2),tl,t2) r e p r e s e n t s  the probable number of 

drops i n  t h e  range dI?i(l) about ri(l) a t  t i  - and i n  the 

range dI'i(2) about ri(2) at  t2. Such a d e n s i t y  would 

become s i g n i f i c a n t  p h y s i c a l l y  if a spray process  depended 

s t r o n g l y  on the j o i n t  q i s t r i b u t i o n  of p a i r s  of Ti .  When 

d i l u t e  sprays are considered, drop-drop i n t e r a c t i o n  ef- 

f e c t s  are assumed s m a l l  and fu&%hbrx>consMer& 

l i m i t e d  t o  the f i rs t  o rde r  d e n s i t y  

s u p e r s c r i p t  (1) omitted.  From an experimental  po in t  of 

view, formidable d i f f i c u l t i e s  are encountered i n  even es- 

timating f which i s  a m u l t i v a r i a t e  d e n s i t y  i n  il + 1 

variables. 

f ( I ' i , t )  w i t h  the  

Various t i m e  averages def ined albng any member @ ( J )  

of t h e  ensemble may be def ined  i n  a manner similar t o  that 

g iven  i n  Fig.  3. However, p r e c i s e  d e f i n i t i o n  of  averaging 

t i m e s  f o r  nons ta t ionary  processes  i s  8 very d e l i c a t e  

matter. For s t a t i o n a r y  random processes  the  t h e o r e t i c a l  

a n a l y s i s  of continuous t i m e  series has been developed i n  

cons iderable  d e t a i l  f o r  a p p l i c a t i o n  i n  f i e l d s  such as com- 

munication ( R e f .  43) and random v i b r a t i o n  ( R e f .  1 6 ) .  How- 

ever, p resen t  spray sampling c a p a b i l i t i e s  are l a r g e l y  l i m -  

i t e d  t o  ins tantaneous  sampling o r  long term averaging. A s  

a r e s u l t  t he  a p p l i c a t i o n  of t i m e  series theory  t o  sprays 

must await the development of experimental  methods f o r  

measuring continuous t i m e  h i s t o r i e s  of spray p r o p e r t i e s .  

The d e n s i t y  func t ion  f i s  a conceptual answer t o  

the problem of how t o  desc r ibe  a spray i n  terms of d rop le t  
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v a r i a b l e s .  The manner i n  which f changes due t o  changes 

i n  t h e  Fi w i l l  now be considered. 

B. The Transport  Equation: A Continui ty Equation f o r  f 

An equat ion of change f o r  f(ri,t) may be w r i t t e n  i n  

the  form of a genera l ized  c o n t i n u i t y  equation: 

where 8, r e p r e s e n t s  a source o r  s i n k  term for '  

of  drops/uni t  I ' i /uni t  t i m e ,  

f ;  number 

R dl"i ri = - The t o t a l  t i m e  d e r i v a t i v e  g iv ing  the  
d t  r a t e  of change of Pi f o r  a d r o p l e t .  

Equation ( 2 . 4 )  r e s u l t s  from an accounting of p o s s i b l e  

changes i n  f w i t h i n  a reg ion  of the  multidimensional 

space defined by the  v a r i a b l e s  ri ( see  Appendix @ B . l ) . *  

For the  p a r t i c u l a r  choice of d r o p l e t  v a r i a b l e s  and 

n o t a t i o n  summarized i n  Table 111, the s p e c i f i c  form of t h e  

equat ion of change for t h e  d r o p l e t  d e n s i t y  func t ion  

f' (D,2,v,TL, t) is:  

( i .)  (ii.) (iii.) 

( 2 . 5 )  

If the  a s s o c i a t i o n s  of f w i t h  a d e n s i t y  p ,  r i  * 
' w i t h  a coordina te  x, a/ari w i t h  an opera to r  
a/+i = vX and T i  W i t h ' A  v e l o c i t y ' ;  k e v ' a r e  made ! 

by analogy; 
usual  c o n t i n u i t y  equat ion i n  f l u i d  dynamics: 

he equat ion takes on the  appearance of t h e  
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TABLE 111. - SUMMARY OF NOTATION FOR 
DROPLET VARIABLES D, 2, E, TL IN 

TERMS OF GENERAL 

i 

I 1  t--- 
D size 

- x position 
vector 

v velocity - 
vector 

TL temperature 

3t. 
Rates given by equations for single 
droplet transport processes occurring 
with the gas. 
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T h i s  i s  t h e  spray  analog of the Boltzmann Equation em- 

ployed i n  molecular s t a t i s t i c a l  mechanics. However, addi-  

t i o n a l  terms appear i n  the spray equat ion due t o  the i n-  

t e r a c t i o n s  of the d r o p l e t s  w i t h  the surrounding gas - a 

s i t u a t i o n  which has no counterpar t  i n  the molecular model. 

The separate terms of Eq. (2.5) account f o r  changes i n  

V.  

v i .  

f ( D , s , v , T L , t )  due t o :  

i. E x p l i c i t  g i m e  v a r i a t i o n  

ii. Change o f  s i z e  (mass) due t o  vapor iza t ion .  

Note that  a spray i s  a mixture of an i n f i -  

n i t e  number o f  "species ,  i . e . ,  s i z e s  of 

drbps', 

!I 

iii.. & i v .  Mechanics of' d rop le t  motion. Note that the  

a c c e l e r a t i o n  4 i s  v e l o c i t y  dependent so  

that  vV e @ #  0; but  s i n c e  1 and 1 ~ .  are 

treated as independent va r i ab les ,  vx 1 = 0, 

and t e r m  iii can be w r i t t e n  1 V,f. 

- 

- 

- 
Change i n  d rop le t  temperature (entha lpy)  due 

j 

t o  heat and mass t r a n s f e r e  

Sources o r  sinksoof " d r o o l e t s '  othek'lbhan vapor7 

ztzation. su'ch as o b l l t s i o n s ,  , :Sh&tter ing,  'arid 

condensation. 

T h i s  c o n t i n u i t y  equat ion f o r  f applies t o  t he  l i q -  

u i d  drops ( o r  i n  genera l  any p a r t i c l e  phase) only, but the 

ra te  expressions a, 4, and 9 couple the  p a r t i c l e  mo- 

t i o n  t o  the gas motion ( s e e  Eq.  ( 1 . 9 ) ) .  

s t r i c t i o n  that  large s c a l e  s t a t i s t i c a l  f l u c t u a t i o n s  i n  

With the re-  
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t h e  gas motion do not occur (as discussed i n  Chapter I ) ,  

the usual  equat ions of change f o r  gas flow i n  terms of 

mean gas p r o p e r t i e s  apply w i t h  the a d d i t i o n  of source 

terms a r i s i n g  from drople t- gas  i n t e r a c t i o n s .  Thus, a 

t h e o r e t i c a l  basis f o r  spray propagat ion s t u d i e s  i s  estab- 

l i s h e d .  

C .  Equations of Change and Associated Mean Q u a n t i t i e s  

The fac t  that  v a r i a t i o n s  of spray p r o p e r t i e s  i n  time 

and space are o f t e n  the  primary concern i n  p r a c t i c a l  

problems l eads  t o  the  a p p l i c a t i o n  of  an averaging proce- 

dure t o  Eq.  ( 2 . 5 )  i n  o rde r  t o  o b t a i n  equat ions of change 

f o r  average spray p r o p e r t i e s  which are only a func t ion  

of - x and t .  . Detailed information about t h e  s ta t i s t i -  

tal v a r i a t i o n  of .- D, - v and- TfC;;. iwc:thus Bsacr%ficed( i n  I 

the hope'of f i n d i n g  s o l u t i o n s  i n  terms of the average 

q u a n t i t i e s  and experimental  methods of  measuring t h e  av- * 

. .  

erages d l r e b t l g .  . prom a mhthematic81 ,poMtr)of view eaah 

term of Eq. (2.5)  can be m u l t i p l i e d  by any func t ion  

q j ( D , v , T ~ )  - and i n t e g r a t e d  over the  e n t i r e  range of t h e s e  

bhree v a r i a b l e s  t o  o b t a i n  marginal d e n s i t i e s  and ensemble 

averages.  The t e r m  marginal i n d i c a t e s  that  the i n t e g r a-  

t i o n  over a t  least  one of the va r i ab les ,  i n  t h i s  case t h e  
z 

p o s i t i o n  v a r i a b l e  5, i s  not c a r r i e d  ou t .  

When these opera t ions  are c a r r i e d  out on Eq. (2 .5 )  

(see Appendix B. 21 E m k  d e t a i l s ) : . t h e  fol lowing equht&on,.of 

change f o r  Qj r e s u l t s :  
\ 
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(iii.) ( i v . )  

( 2 . 6 )  
( v i . )  

The s i g n i f i c a n c e  o f  each t e r m  i s  as fo l lows:  

i. 

ii. Che divergence of  the  f l u x  of  $3; a "convective" 

the  ra te  of change of t he  spat ial  d e n s i t y  of $j  

term 

' T e r m s  due t o  t r a n s f e r  of $ j  between phases: 

iii. mass t r a n s f e r ,  e .g . ,  vapor iza t ion  

i v .  momentum t r a n s f e r ,  aerodynamic drag 

V.  energy t r a n s f e r ,  e .g . ,  heat t r a n s f e r  and vapori-  

z a t i o n  

v i .  r a t e  of  c r e a t i o n  of $j per  u n i t  spat ial  volume. 

I f  the  weighting func t ions  $j are chosen t o  be the 

drop'let mass3 momentum and energyjequat ions of change f o r  

t h e s e .  three q u a n t i t i e s  r e s u l t .  Table I V  summarizes these 

s p e c i f i c  func t ions  of D, 1, and TL and t he i r  der iva-  

t i v e s .  The i n t e g r a l s  which r e s u l t  from s u b s t i t u t t b n  of 

the  expressions from Table ITT into,  Eq. (2 .6 )  are given i n  

Table V along with 'a  condensed no ta t ion .  The n o t a t i o n  was 
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! 

chosen t o  emphasize the  analogy between t h e  d r o p l e t  and 

the gas dynamic equat ions of change. Bracketed q u a n t i t i e s  

are weighted ensemble averages w i t h  the weighting f a c t o r  

ind ica ted  by the s u b s c r i p t .  They are def ined  f o r  any 

func t ions  g ( f i , t )  and W ( r i )  by a genera l ized  form o f  

Eq. (2 .3) :  

( 2 . 7 )  
Jw( ri g (ri t f ( ri t d r i  

W ( ~ i ) f ( l ? i , t ) d l ? i  s < g ( r i , t ) > W  = 

The s p e c i f i c  weighting func t ions  used i n  Table V are drop- 

l e t  mass, M = pL7rD3/6, and r a t e  of change of  mass, 

M = p . ~ D a / 2 .  

i s  given by: 

For example, t h e  mass average v e l o c i t y  <v> XI - M  

It i s  customary i n  spray  staidies t o  de f ine  var ious  

mean diameters (Ref. 44) : 

r-s 
( 2 . 9 )  

The exponents r and s a r e  o f t e n  chosen a r b i t r a r i l y ' o r  

by l a r g e l y  q u a l i t a t i v e  arguements. However, the  mean 

q u a n t i t i e s  def ined i n  Table V on phys ica l  grounds provide 

a r a t i o n a l  choice of mean diameters depending on the term 

considered. For example, t h e  powers of diameter of i n -  

t e r e s t  f o r  t he  t r a n s p o r t  terms a r e  inf luenced by t h e  
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dependence of a;, 4 and on D. Also since 1 and 

TL 
with D, means in terms of D alone provide a very lim- 

have been included in the theory on an equal basis 

iked description of the spray. A generalized form of 

Eq. (2 .9)  with a weighting function W may be defined for 

one of the drop variables pi.' 

(2.10) 

For  s = 0, Eq.. (2.10) reduces to a special case of 

Eq. ( 2 . 7 ) .  In general the weighted ensemble average given 

by Eq. (2 .7)  provides a set of mean quantities having more 

direct physical interpretation. 

The source term appearing on the right of Eq. (2 .6)  

cannot be treated in more detail without specifying a 

process such as collisions or shattering. If droplet col- 

lisions are considered arid','the $j chosen are tsummational 

invariants of an encounter, the source integral is equal 

to zero (Ref. 41). Summational invariants are droplet 

properties which are conserved in a collision~.i.&:,,the. 

" 

sum of the $j 

sum of the for the droplets existing after the en- 

counter. The droplet mass, momentum, and energy as de- 

f o r  drops before the encounter equals the 

fined in Table IV are conserved in a collision only if 

vaporization, drag and internal dissipation in the liquid 

are negligible during the collision and surface energy, 

aD20,  is fncluded along with the kinetic and internal 

I 
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forms. The source term involving !u will not be included 
in the discussion which fo l lows .  This means that the 

equations presented are valid f o r  & =  0 or when qJ 
summational invariants f o r  the process considered. 

are 

The resulting equations of change f o r  the droplets 

are: 

continuity 

(2.11) 

Corresponding equations of change for the gas phase are: 

continuity 

(2.14) 

momentum 

*See Appendix C.l f o r  an alternate form of the terms 

M 
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energy 

where : 

(2.16) 

d e n s i t y  of the  gas-vapor m-iatyre., 
u n i t  spatial'.voludne .(gas- Lt Liquid hcsi3.s d3.S- 
t inguished from the mass of1,gas pe r  . 
u n i t  volume occ l'<< 

of gas p e r '  

" ' ( 7  - 

A s  the  spray becomes more d i l u t e :  v +. 0 and 

p g  
i n t e r n a l  energy of  t h e  gas per u n i t  mass 

heat  f l u x  vec to r  f o r  

going t o  t h e  drops  

shear  stress t e n s o r  

u n i t  t e n s o r  

pg + 2, the p ressu re  

Drop-gas i n t e r a c t i o n  
- - 

of t h e  equat ions w i t h  t h e  

(2.17) 

heat t r a n s f e r  o t h e r  than  that  

t e n s o r  f o r  t h e  gas phase 

terms appear on the  r i g h t  sides 

d i f f e r e n c e  i n  s i g n  between the 

two sets r e f l e c t i n g . t h e  f a c t  that a q u a n t i t y  lost by one 

phase r e p r e s e n t s  a g a i n  i n  the  o the r  phase. I f  cor re-  

sponding equat ions f o r  l i q u i d  and gas are summed, i n t e r -  

a c t i o n  terms cancel  and the fol lowing equat ions result 

f o r  the  two-phase mixture.  
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c o n t i n u i t y  

(2.18) 

momentum 

energy 

- i: -v - x n - ks ( (g + C PL T L ). IM + pi($ +%);, - g - -f , - 4  - 

( 2 . 2 0 )  

Analogous no ta t ion  forCthe l i q u i d  and gas )phase( quan- 

t i t i e s  was not used i n  the  above equat ions.  Rather, a 

conventional continuum mechanics n o t a t i o n  was used f o r  

the  gas to emphasize the  s tandard  form of the  gas dynamic 

terms. For example, t h e  gas v e l o c i t y  . g  i s  by d e f i n i t i o n  

a mass average v e l o c i t y  which i s  the gas phase counterpar t  

of  <-I[)M. 
chanics  by an opera t ion  analogous t o  Eq. ( 2 . 7 )  f o r  sprays.  

It i s  obtained i n  molecular s t a t i s t i c a l  me-  

The terms involving a, Kf, and 4 r ep resen t  dev ia t ions  

from the mass average behavior ( s e e  Appendix C . 2 )  
I - 

S u b s t a n t i a l  forms of the spray equat ions may be ob- 

t a i n e d  by using the  c o n t i n u i t y  Eq. (2.11) and t h e  d e f i n i -  

t i o n  of t h e  d e r i v a t i v e  fol lowing t h e  mass average motion: 
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The s u b s t a n t i a l  forms of Eqs. (2 .8)  t o  (2.10)  a r e :  

The terms on the r i g h t  hand sides represen t  devia-  

t i o n s  from t h e  mass average motion. For example, a t e n s o r  

?T f o r  t h e  spray may be defined i n  analogy w i t h  Ef f o r  

the gas as: 
- =s - 

(2.21) 

From a s t a t i s t i c a l  poin t  of view,  IT^ i s  a mass weighted 

variance-covariance mat*ix i n  terms of the  drop v e l o c i t y  

components. Note that +apor iza t ion  term such as: 

- 

- E a(<9fi - <$MI (2.22) 

deperid on t h e  d i f f e r e n c e  between the  averages obtained by 

weighting w i t h  the r a t e  of change of d rop le t  mass and t h e  

mass, r e s p e c t i v e l y  . 
D.espite the formal s imilari t ies  between the equat ions 

and methods of d rop le t  and molecular s t a t i s t i c a l  mechan- 

i c s ,  s e v e r a l  b a s i c  phys ica l  d i f f e r e n c e s  e x i s t .  Some of 
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these are summarized in Table VI. 

reference conditions describing a 

deprives the spray formulation of 

posses sed by',% he molecular,,model . 

The lack of absolute 

spray equilibrium state 

the degree of generality 

The spray equations may be manipulated into many 

other forms analgous to gas dynamic counterparts such as 

overall "macroscopic" balances (Ref. 45). 

change for other quantities such as droplet 'numbers may be 

obtained from the transport Eq. (2.5) by using alternate 

weighting function8 qj and intergrating over other com- 

binations of the variables D, 1, and TL. The utility 

- of all this manipulation hinges on the association of the 

Equations of 

various terms with measurable quantities. 

D. Relationship of the Statistical Model to Practical 
, I  SituationB . . .  

The key quantity in the statistical model j u s t  pre- 

sented is obviously the density function f. Given f9 

all the average densities and fluxes of liquid mass, 

momentum, and energy may be calculated. With the added 

information of the state of the gas and expressions for 

the transport rates By&, and q, all the gas-liquid in- 
teraction terms may be evaluated. This is simply a way of 

saying that a consistent and comprehensive theory has been 
b 

- formulated based on f. Some approaches t o  the applica- 

tion of the theory and its relationship t o  existing spray 

measurements will now be considered. 
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The most thorough scheme of a p p l i c a t i o n  t o  t he  propa- 

g a t i o n  problem i s  as fol lows.  

f (D,v,xo,TL,t)  and the  state of the gas ( p , r p f o , T g o , ~ o  

and composition) a t  the  su r face  of formation - x = so; com- 

puke 

spray t r a n s p o r t  Eq. ( 2 . ~ 5 )  and the gas dynamic equat ions 

of change ( E q s .  (2 .14)  t o  ( 2 . 1 6 ) )  Which include t h e  

drople t- gas  i n t e r a c t i o n  kerms. 

are b u i l t  i n t o  f o  to f i x  the normalizat ion cons tant .  

For  example: 

Given t h e  d e n s i t y  func t ion  

f (D,v,x,TL,t)  a t  a l l  downstream p o s i t i o n s  using the  

Known i n j e c t i o n  parameters 

( 2 . 2 3 )  

where 

$( t )  = mass flow rake of l i q u i d  a t  any time 

dsf = i n d i c a t e s  an i n t e g r a l  over the su r face  of forma- 

t 

t i on  

The cons t ruc t ion  of a s o l u t i o n  t o  t h e  four ,  coupled par- 

t i a l  d i f f e r e n t i a l  equat ions i s  very d i f f i c u l t  i n  p r a c t i c e  

and r e q u i r e s  s i m p l i f i c a t i o n s  such as one-dimensionali ty - 

. t-0 a r r i v e  a t  manageable forms t o  which i t e r a t i v e  tech-  

niques may be applied. 

Aside from mathematical d i f f i c u l t i e s ,  t h e  chief  i m -  

pediment t o  a p p l i c a t i o n s  i s  the l ack  of information about 

fo .  N o  theory  of formation i s  a v a i l a b l e  t o  p r e d i c t  f o  

from a knowledge of i n j e c t i o n  parameters.  Measured and 

c o r r e l a t e d  data are genqra l ly  l i m i t e d  t o  two s p e c i a l  
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density functions which are explicitly functions of D 

and - x. The first type, usually called a "volume" or 

spatial drop size distribution"* is given in terms of f I? 

as: 

is given by: 

vf(D,x,v,TL,t)d~ - -  dTL JJ - 
f (D,x,t) = -F - (2.25) 

For a stationary process f is independent of time and, 

consequently, so are fS and fF. Table VI1 compares the 

ways in which fs and fF are obtained experimentally 

and their physical interpretations. Note that the col- 

lection method described for measuring gF is limfted to 

steady sprays while Elq. >(2.25) de'fines gF in the unsteady 

case as well. 

Even when the cases considered are limited to sta- 

tionary random processes (steady sprays), questions remain 

as to the equivalence of xF measured as a direct, ex- 

perimental average over time and fF found by integrating 

over the ensemble (Eq. (2.25)). A stationary random proc- 

ess f o r  which time averages are equal to ensemble averages 

3t- ? ?  "Density" is a more precise term to use with dis- 
tribution" reserved for the cummulative form of f. How- 
ever, the common practice is to use distribution for both 
cases 
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? 

is termed ergodic. Due to the extreme theoretical diffi- 

culties involved in trying to establish necessary condi- 

tions for a process to be ergodic (Ref. 46), the condi- 

tion is usually assumed in practice. The validity of the 

assumption may then be tested directly if enough accurate 

data are available or indirectly in a gross sense by the 

predictive success of the theory. Since direct measure- 

ments may be made on a spray to estimate the ensemble 

density function, the ergodic problem is less acute for 

sprays than for the molecular case, where the theory is 

developed entirely in terms of the ensemble but observ- 

able quantities are necessarily time averages. 

Botkr fS and rF are marginal densities in the 
sense that and TL dependence are integrated out 

mathematically and disregarded experimentally. Thus ad- 

ditional information about and TL must be provided 

or assumed in order to calculate transport processes oc- 

curring between the gas and liquid. A common practice 

is to take the initial values of 1 and TL to be 

single-valued and equal to the values at the injector: 

and TLE (Ref. 5). The expression for f o  then I E  
takes the form: 

fO fSo(~,%rt)6(v - vE)~(TL - TLE) (2.26) 

where the delta functions are-defined for any variable y 

as: 
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YO 6(Y - Yo) = co if y = 

= o  otherwise 

Physically this means that the actual formation region is 

ignored as though the spray formed instantaneously at the 

injector face, and that a drop of given size has unique 

values of and TL at any downstream position. Avail- 

able data for f F  and fs are often ambiguous as to the 

pQsition dependence, seldom were taken at locations ap- 

proximating the surface of formation, and are often used 

interchangeably as though they were equivalent. 

The average (expected value) of any function g(ri) 

for a given value of the spray variable rj  is defined 

( 2 . 2 7 )  

A particular case of interest is the expected value of 

velocity at a given size as a function of D and 5 

gtven by: 

vf(D,v,x,TL,t)dv dTL & 

f (D, 1, X, TL’ t ) dv - dTL 
= -  (2.28)* 
f S 

f f - .  
J/ 

<XlD> = 

It has been estimated experimentally by averaging measured 

* In statistical terminology, this is the regression 
curve of 1 on D. 
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v e l o c i t i e s  of p a r t i c u l a r  s i z e d  drops ( R e f s .  10, 11, 

and 12) ,  but was not  i n t e r p r e t e d  as being derived from a 

d e n s i t y  func t ion  f which contained 1 as a randomly 

d i s t r i b u t e d  v a r i a b l e .  The amount of s c a t t e r  i n  the  data 

i s  probably an i n d i c a t i o n  of s t a t i s t i c a l  f l u c t u a t i o n s  i n  

the  small samples i n  a d d i t i o n  t o  normal measurement 

e r r o r s .  From Eq. (2.28) it i s  seen that f o r  a s t a t i o n a r y  

ergodic process ,  <v]D> i s  given by the r a t i o  of the  d i s -  

t r i b u t i o n s  as measured by the methods i n  Table V I I .  

An a l t e r n a t e  approach t o  the  propagation problem i s  

t o  use the  equat ions of  change f o r  average spray v a r i -  

ables, Eqs .  (2 .11)  t o  (2 .13) ,  i n s t ead  of,khe, spray t r a n s-  

p o r t  Eq. ( 2 . 5 ) .  

and handle a l l  t h e  d e t a i l e d  information assoc ia ted  wi th  

f while s t i l l  providing a u s e f u l  q u a n t i t a t i v e  descr ip-  

t i o n .  I n i t i a l  va lues  of v a r i a b l e s  such as ps, <$M and 

<TdM along w i t h  some drop s i z e  information (analgous t o  

s p e c i f i c a t i o n  of gas phase composition) must be s p e c i f i e d  

The a i m  i s  t o  avoid having to spec i fy  

as i n i t i a l  condi t ions  a t  the su r face  of formation. 

The success  of t h i s  approach depends t o  a large ex- 

t e n t  on t h e  a b i l i t y  t o  p r e d i c t  o r  measure the  average 

spray v a r i a b l e s  d i r e c t l y  without r e fe rence  t o  s t a t i s t i c a l  

d i s t r i b u t i o n  func t ions .  Overal l  average flow i s  given by 

i n j e c t i o n  ra te  fi; and l o c a l  values of mass f l u x ,  P,<$~, 

may be obtained by c o l l e c t i o n  tubes  (Ref. 47).  But o t h e r  

q u a n t i t i e s  such as ps and ($iM are d i f f i c u l t  t o  

9 
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measure without r e s o r t i n g  t o  detai led photographic mea- 

surements on ind iv idua l  drops.  When working w i t h  average 

q u a n t i t i e s ,  terms due t o  dev ia t ions  from average behavior 

are o f t e n  ignored. Ror example, terms due t o  dev ia t ions  

from <+M are r u l e d  ou t  by assuming (1 +M = <$M<9M 

and ($ - v ) ~  = <3M($)k analogous t o  i n v i s c i d  and adia- 

b a t i c  assumptions i n  gas flow. 

terms such as a, <&M and <C?>, are p a r t i c u l a r l y  

troublesome s i n c e  t h e  appropr ia t e  mean drop s i z e  t o  be 

used f o r  each depends on t h e  v a r i a t i o n  of a ,  4, and 

The drop-gas i n t e r a c t i o n  

w i t h  D. Ex i s t ing  experimental  methods f o r  d i r e c t l y  

measuring mean s i z e s  are l i m i t e d  i n  number and uncer t a in  

as t o  t h e  exact diameter weighting ( R e f .  48) .  

I n  view of l i m i t e d  information a v a i l a b l e  on f o r  

f 0  and the key r o l e  they  p l a y  i n  spray  desc r ip t ion ,  the 

remainder of t h i s  paper w i l l  deal with experimental mea- 

surements of  s i z e- v e l o c i t y  d e n s i t y  func t ions  as a func t ion  

p o s i t i o n  i n  a spray. 
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Chapter I11 

EXPERIMENTAL MEASUREMENT OF THE SPRAY DENSITY FUNCTION 

Although a s t a t i s t i c a l  mechanical theory  of a spray 

based on the d e n s i t y  funct ion  may be p r e c i s e l y  formu- 

lated,  t h e  a p p l i c a t i o n  and v e r i f i c a t i o n  of the  theory  

r e q u i r e s  the  experimental  measurement of s p e c i f i c  va lues  

of f ,  and such measurements involve u n c e r t a i n t i e s .  Two 

d i f f e r e n t  types  of u n c e r t a i n t i e s  arise.  The first type, 

common t o  a l l  experiments, r e s u l t s  from the p r a c t i c a l  

l i m i t s  of measurement r e s o l u t i o n  and accuracy; e.$., 

the  spat ial  and t i m e  r e s o l u t i o n  l i m i t s  mentioned i n  

Chapter I i n  connect$on w i t h  photographic observat ions.  

The second type arises from the random na tu re  of the  

phys ica l  processes  considered and . the r e s u l t i n g  stat is-  

t i c a l  cha rac te r  of the q u a n t i t i e s  of i n t e r e s t .  Even i f  

ind iv idua l  d rop le t  p r o p e r t i e s  such as s i z e  o r  v e l o c i t y  

are measured w i t h  g e g l i g i b l e  e r r o r ,  the  spray d e n s i t y  

func t ion  f may only  be est imated s i n c e  f i s  defined 
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by a l i m i t  over a l l  p o s s i b l e  samples as the range of the 

v a r i a b l e s  considered becomes vanish ingly  small (Eq. ( 2 . 2 ) ) .  

Formulation of the  theory  i s  exact because complete 

information about t h e  spray i s  assumed i n  t h e  d e f i n i t i o n  

of f. Applicat ion of the theory  i s  approximate because 

experimental  information about a spray i s  always incom- 

ple te .  

p o s s i b i l i t y  of p r e d i c t i n g  the  manner i n  which a spray 

progagates given a l o c a l  va lue  of f which has been 

est imated wi th in  an acceptable  band of uncer ta in ty  by a 

l i m i t e d  number of measurements. 

The q u a n t i t a t i v e  value of the  theory  l i e s  ‘in the  

A s  the  amount of information contained i n  f i s  

increased  by inc reas ing  the  number of d rop le t  v a r i a b l e s  

considered as arguments, t h e  number of measurements re- 

quired t o  e s t ima te  f inc reases  f o r  a given l e v e l  of un- 

c e r t a i n t y .  Nine v a r i a b l e s  were considered. i n  Chapter 11: 

s i z e ,  three components each of -p o s i t i o n  apd ve loc i ty ,  

temperature and t i m e .  For experimental  purposes, t h i s  - 

number had t o  be reduced t o  t w b  o r  three i f  meaningful , 

es t imat ions  were t o  be made w i t h  a v a i l a b l e  resources.  

The emphasis was on t h e  t reatment  of drop le t  v e l o c i t y  on 

an equal  s t a t i s t i c a l  basis w i t h  drop s i z e .  
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To begin, the scope of the measurements is discussed 

in terms of the form of f measured, the overall fea- 

tures of the spray system considered, and the sampling 

scheme employed. Next, the double-exposure fluorescent 

technique which was used is described. Finally, the 

specific data acquisrl;ti?_ap,gnd redu n methods employed 
are given. 

A. The Scope of the Measurements 

The particular form of the density function measured 

was restricted t o  the variables D, - v, and - x. Droplet 

temperature was not measured, i.e., the observations "in- 

tegrated" over TL. Injection parameters were held con- 

stant so that a steady-state spray condition (stationary 

random process) could be assumed. In terms of the gen- 

eral f, the measured density fB is: 

where indicates that the functions are evaluated at 

a particular position in the spray, 2 = - x'. Symmetry was 

assumed about the spray axis, and only two components of 

position and velocity were considered - in cylindrical 
coordinates: r, z, vr, and vz. Any v8 was normal to 

the film plane and could not be measured. 
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An unconfined spray was formed by a swirl atomizer 

injecting into room temperature air at atmospheric pres- 

sure. Ethyl alcbhol was the fluid used, and the only pa- 

rameter varied during the course of the investigation was 

injection pressure. The objective was to measure local 

values of f B  over a cross section at different down- 

stream distances, the first of which was located near the 

surface of formation. 

The method of estimating f B  was to choose a small 

sample volume located about a position - x' in the spray, 

and measure the sizes and velocities of all droplets in 

the volume at several instants in time. Since the spray 

process was assumed to be stationary, the particular sam- 

pling times chosen were arbitrary. The collection of 

samples formed a portion of the ensemble from which the 

density fg was estimated. 

* 

mentation of this method required a sampling 

technique which had high spatial resolution but did not 

disturb the spray. The ease of data reduction was also 

an important consideration since the uncertainty of the 

estimation was reduced as the number o'r samples was in- 

creased. However, a competing criterion was that the 

droplet properties be measured as directly as possible so 

* If the spray was actually unsteady due, for example, 
to a resonant oscillation in the formation process; the 
collection of samples taken at random intervals in time 
would constitute a time average over the ensemble. 
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that measurement uncertainties were not further compounded 

by an involved data reduction analysis to obtain D and 

- v. 
graphy was used to measure sizes and velocities. This 

technique had the advantages of leaving the spray undis- 

turbed while providing direct, local values of droplet 

variables; but the thousands of film measurements re- 

As a compromise; doublk-exposure f1uorescent':photb- 

quired made the data reduction process very lengthy and 

tedious. 

B. The Double-Exposure Fluorescent Technique 

The fluorescent technique of photographing droplets 

in a spray was originally developed (Refs. 49 and 50) and 

applied (Ref. 19) as a single exposure method for measur- 

ing the sizes of the drops in a small spatial volume at 

any instant. From a collection of such photographic 

samples, local values of the spatial drop size distri- 

bution 

related results). 

trolled double-exposure capability was added to provide a 

measure of drop velocity as well as size so that 

could be estimated. 

fs were obtained (Fig. 5 is a sample of the cor- 

In the present study a precisely con- 

fB 

The key feature of the technique is the addition of a 

fluorescent dye* to the liquid being sprayed. Upon 

* The dye concentration is small, typically 0.5%- by 
weight, so that the change in liquid properties is neg- 
ligible (Ref. 50). 
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e x c i t a t i o n  by an i n t e n s e  source, t h e  dye absorbs i n  ope 

wavelength band and emits i n  another  making each drop a 

r a d i a t o r  which exposes the  f i l m .  The l igh t  source i s  not  

d i r e c t e d  i n t o  the camera. Rather, a shaped beam perpen- 

d i c u l a r  t o  t h e  camera a x i s  i s  used t(o s e l e c t i v e l y  l i g h t  

t h e  r eg ion  of the  spray under study. Only drops wi th in  

the camers 's  depth of f ie ld* are l igh ted  and caused t o  

f luoresce .  The p o r t i o n  of the  l i g h t e d  reg ion  vdewed by 

t h e  camera c o n s t i t u t e s  t h e  sampling volume. 

Fluorescent  photography has a d e f i n i t e  advantage 

over: back- l ight ing  methods when mul t ip le  exposures are 

used. Each d rop le t  image c o n s i s t s  of an exposed spot on 

an unexposed background, and each exposure i s  recorded 

independently o f  t h e  o the r s .  T h i s  i s  not t h e  case i n  

back- l ight ing  methbas whene . a l l  film.'areas are exposed 

except those  corresponding t o  the  cur ren t  p o s i t i o n  of the  

drops.  Thus, the  second and any succeeding flashes l i g h t  

previous ly  unexposed a r e a s  and attempt t o  record  images 

i n  previous ly  exposed areas. The r e s u l t  i s  a reduct ion  

i n  imBge d e f i n i t i o n  due t o  reduced c o n t r a s t .  

A p i c t o r i a l  view of the  experimental  arrangement 

which was used i s  given i n  Fig.  12 .  The axes of the  

spray, camera, and l i g h t i n g  system were mutually perpen- 

d i c u l a r .  Liquid conta in ing  the  f luorescen t  dye was 

*"Depth of f i e l d "  as used here, i s  defined as the  
d i s t ance  along the  camera a x i s  over which the smal les t  
d r o p l e t s  considered ( l op )  are sharply  focused a t  the  f i l m  
plane.  
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injected vertically from a swirl atomizer, passed through 

the region where sampling occurred, and was collected and 

removed from the room by an exhaust system. Identical 
\ 

lighting systems consisting of constricted spark gaps and 

quartz condensing lenses having specially shaped aperture 

stops were located on either side of the camera axis. 

When either gap was fired the condenser lenses focused 

and shaped the beam t o  light the same volume in the spr;zy. 

The firing sequence of the two sources was controlled t o  

produce two flashes separated by a known time interval. 

Each drop within the sampling volume viewed by the camera 

successively fluoresced and was recorded on the film. The 

position of the camera and lighting system was fixed to 

maintain alignment, and the nozzle was positioned so that 

the spray could be sampled at various axial and radial 

locations. 

Table VI11 summarizes the specifications and oper- 

ating conditions for the various elements of the sampling 

system. The performance requirements of the individual 

components were strongly interrelated by considerations 

of light economics - getting enough fluorescent radiation 

to the film to record distinct, measurable images. De- 

tails regarding the development of the lighting and cam- 

era systems, the fluorescent dye characteristics, and 

the alignment and focusing procedures are available else- 

where (Refs. 19, 49) i )The'.PdisdussPon of! the &milware 

which follpws emphasizes the double-exposure capability 
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TABLE VIII. - SAMPLING SYSTEM SPECIFICATION$ AND 

I 

, 

OPERATING CONDITIONS 

Light Sources: Guided Air Sparks 
Maximum energy - 80 joules; 0.1 pf charged to 40 KV 
Flash duration (half peak) - 1.5 - 2.0 ps 
Delay between flashes - continuously varlable; nominal 
values used 9.5 - 74 ps 

Sampling Volume: Thin Slab Parallel to the Spray Axis 
Size - 0.16,O X 0.160 X 0.008 inches 
Formed by two 6-inch, f/1.2 plano-parabolic,fused- 
quartz condensing lense8 

Fluorescent Dye: Uranin (Fluorescein) 
Concentration - 5 grams/liter in 95% Ethyl Alcohol 
Spectra& characteristics - absor tion peaks at 2500 and 
4900 A; emission peak at 5300 f 

Camera: Two Lens Relay System 
Objective lens - f/3.5, 6 in. Wollensak Raptar operated 
Reimaging lens - f/2.0,  58mm Zeiss Biotar 
Overall magnification - 25 
Size resolution - l op  +, 10% (static calibration, ref. 49) 
Working distance - 6 inches 
Depth of field for lop objects - x220p 

at f/5.6 

Film: Kodak Royal - X Pan, 4x5 sheets, ASA 1200 
Development - 12 minutes in DK-6Oa continuous agitation 
followed by Monckhoven's intensifier 
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s i n c e  t h i s  was the major ex tens ion  of the f luorescen t  

technique which was accomplished i n  t h i s  i n v e s t i g a t i o n .  

The dimensions of t he  sampling volume which was i n-  

t e n s e l y  l igh ted  were f i x e d  a t  0.160 X 0.160 i n .  ( the  

camera's f i e l d  of vie*). X "  ila.:@hiC:k ( s l i g h t l y  

l e s s  than  t h e  camera's  depth of f i e l d ) .  A t h i n ,  v e r t i -  

c a l  "sheet" of l i g h t  having these dimensidns had t o  be 

formed; and the appropr ia t e  source geometry was a l i n e .  

Since a v a i l a b l e  f lash tubes,  having s u i t a b l e  dimensions, 

were unable t o  withstand repeated  d ischarges  a t  energy 

loadings of a t  l e a s t  10 joules ,  t h e  less e f f i c i e n t ,  but 

more rugged guided a i r  spark was used (Ref. 1 9 ) .  

The cons t ruc t ion  deta i l s  of t h i s  source are shown i n  

Fig.  13. The d ischarge  occurred i n  a 0.032 X 0.125 

X 0.750 i n .  slot mil led  i n  a e e f l o n  block. I n  a d d i t i o n  

t o  guiding the  d ischarge  t o  a s su re  a repeatable path, 

t h e  s l o t  c o n s t r i c t e d  the  spark channel t o  incregse  the  

cur ren t  f l u x  and t h u s  the  i n t e n s i t y .  A s  the t e f l o n  grad- 

u a l l y  eroded, t h e  i n t e n s i t y  decreased and the  block had 

t o  be replaced  a f te r  200 t o  300 flashes. Micalex s l i t s  

i n  f r o n t  o f  the  t e f l o n  block provided a d imens imal ly  

stable l i n e  source 0.032 i n .  wide and 0.650 i n .  long 

which was uneffec ted  by the enlargement of the s l o t .  

The s l i t s  were r e l i e v e d  from t h e  su r face  of the  t e f l o n  and 

were supported by a cover plate  so that they  would with- 

s tand the shock wave produced by the discharge.  
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5 

\ 
\ 

1 Brass electrode 
2 
3 Micalex sli ts 
4 Micarta cover pla te  
5 Plexiglas bed 

Teflon guide for  the spark 

Fig. 13. - Guided spark source. 
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The formation of a constant width light sheet having 

sharply defined intensity cutoff at the edges can only be 

approximately accomplished in practice when an incoherent 

source and conventional lenses are used. Sheet definition 

can be improved only at the cost of intensity reduction. 

Two plano-parabolic, fused-quartz* condensing lenses were 

used t o  form an image of the source in the spray with a 4X 

reduction in size. The plane surfaces were adjacent t o  

increase axial spherical aberration, and a specially 

shaped aperture stop (Ref. 19) was inserted between the 

lenses to block portions which would otherwise focus ex- 

traneous radiation at the edge of the sheet. In this 

way, a sheet was produced which had an approximately con- 

stant thickness of 0.008 in. over the required distance 

of 0.160 in. ** 

Two time intervals were considered in the temporal 

control of the lighting sequence. They are the duration 

of a single flash, tD, and the interval between successive 

flashes, tI. 

are summarized in Fig. 14. Droplet displacements, Ax, 

Ideal cpiterLa for: choosing .time interv&Zs 

Ultraviolet transmission was required since the dye * 
absorbed in that spectral region. 

See Appendix D for a discussion of the possibility ** 
of using a laser light source to overcome the difficulties 
associated with the light sheet formation. 
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Intensity 

tI - 
Lighting Sequence 

Time 

highest velocities 

Largest drops with 
lowest velocities 

Fig. 14. - Ideal Timing Criteria for Double Ebposure Photography. 
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are referenced t o  drop s i z e .  Exposure t i m e  should be 

shor t  enough t o  make motion b l u r  n e g l i g i b l e  and flash in-  

t e r v a l  long enough t o  separate t h e  two images. Figure 15 

g ives  numerical va lues  of r e l a t i v e  displacement rates as 

a f u n c t i o n  of  s i z e  and v e l o c i t y .  For the range of s izes  

and l i q u i d  sheet v e l o c i t i e s  considered i n  the  experiments, 

the  ideal c r i t e r i a  i n d i c a t e  that a f lash dura t ion  of less 

than  0.1 ps and a minjmum i n t e r v a l  of appr oximat e l y  101-1 s 

are d e s i r a b l e .  

F lash  tubes  and spark gaps with energy Inpu t s  of 

10 t o  100 jou les  p e r  p u l s e  have minimum dura t ions  of the 

order  of 1ps. Rather than  being rec tangu la r  i n  shape, khe 

i n t e n s i t y  p u l s e s  have a r a p i d  r i s e  followed by a much 

slower exponent ial  decay as shown i n  Fig.  16(a) .  The re- 

s u l t i n g  appearance of the images of drops which move an 

apprec iable  f r a c t i o n  of t he i r  diameter during exposure i s  

shown i n  Fig.  1 6 ( b ) .  I n  t h i s  s i t u a t i o n  d rop le t  shape is 

not observable.  A apherlcal. shape must be assumed and 

the  width of the  streak taken as a measure of t he  s i z e .  

Since the  i n t e n s i t y  r i s e  i s  rapid, one edge of each image 

i s  sharp; and displacement can be measured. The problem 

of motion b l u r  i n  t h i s  case  i s  that t h e  a v a i l a b l e  f luo-  

rescen t  i n t e n s i t y  i s  d i s t r i b u t e d  over t he  area of the 

streak wi th  an a t t endan t  decrease i n  image dens i ty .  Fea- 

s i b i l i t y  t e s t s  i n  which a laser was used t o  l i g h t  t h e  

drops are described i n  Appendix D. The r e s u l t s  ind ica ted  
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- - R a n g e  of l iquid sheet 
veloci t ies  used 

I I I 1 1 1 1  
000 10000 
m plane, in./sec 

2 5 10 20 50 100 200 500 
Magnitude of drop velocity para l le l  t o  the film plane, ft/sec 

I I I I I I 1 
1 2 5 10 20 50 100 

Magnitude of drop velocity para l le l  t o  the film plane, m/sec 

Fig. 15. - Relative Displacement Rates as a Function of Ikop Size and Velocity. 
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(a) Typical Intensity-Time Trace. Zps/division 

P 

(b) Image Characteristic for 
Small, Fast Drops. 

Fig. 16. - Actual Source and Image Characteristics. 
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that the  use  of such a source would g r e a t l y  extend the  

range of drop v e l o c i t i e s  that could be success fu l ly  photo- 

graphed. 

Since the  alignment and focusing a f  the  camera t o  

superimpose the depth of f i e l d  on the  l ighted volume was 

a d e l i c a t e  and c r i t i c a l  operat ion,  it would have been de- 

sirable t o  use one source t o  produce both  f l a s h e s .  A de- 

velopment e f f o r t  t o  accomplish t h i s  was unsuccessful  due 

t o  t h e  magnitude of t h e  pu l se  energies  involved and the  

requirement o f  a lops  i n t e r v a l  ( s e e  Appendix E ) .  Thus, 

two i d e n t i c a l  l i g h t i n g  pystems were used t o  independently 

produce the  two pulses .  

A block diagram of t h e  apparatus  f o r  c o n t r o l l i n g  and 

monitoring t h e  i n t e r v a l  between flashes i s  shown i n  

Fig.  17 .  The f i r i n g  sequence was i n i t i a t e d  by manually 

a c t i v a t i n g  t r igge r  genera tor  I t o  f i r e  source I whose 

output was monitored by a vacuum phototube. The output 

from t h e  phototube t r iggered the sweep of t h e  osc i l loscope  

which had an i n t e r n a l  delay c i r c u i t .  At t he  end of a pre-  

set de lay  per iod  measured from the i n i t i a t i o n  of the  sweep 

an output  pu l se  was generated.  The delayed pu l se  was am- 

p l i f i e d  and appl ied  t o  t r i gge r  genera tor  IT t o  f i r e  

source I1 whose output was a l s o  monitored by the  photo- 

tube.  The de lay  pe r iod  was cont inuously ad jus tab le ,  and 

the  f lash  i n t e r v a l  was measured from the  intensity-time 

t r a c e  ( see  Fig.  1 6 ( a ) ) .  A t  a given de lay  s e t t i n g  the 

f lash i n t e r v a l  was constant  t o  wi th in  +O.2 ps. - 
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ENERGY STORAGE ENERGY STORAGE 
CAPACITOR AND LIGHT LIGHT CAPACITOR AND 
SdITCH I SOURCE I SOURCE I1 SdITCH I1 

MIRRORS ---\ &-- 
\ I 
\ I 

TRANSFORMER I \ I  \ TRANSFORMER I1 
\ I  
\ I  
\ I  

I \ 
\ I PULSE 

TRIGGER 
GENERATOR I1 GENERATOR I PHOTO TUBE 

START MANUALLY 
WITK PUSH BUTTON 

START 
SWEEP 

(RCA 929) LrJ 

AMP LI F I E R 

Q 

DELAYED PULSE 
OUT OF SCOPE I 

OSCILLOSCOPE 
(TEICTRONIX 555) 

Figure 17. - Block diagram of the l i gh t  source control and monitoring apparatus. 
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The s p e c i f i c  events  which occurred during the  f i r i n g  

Q f  e i ther  source may be followed by r e f e r r i n g  t o  the  C i r -  

c u i t  diagram i n  Fig .  18. By ei ther  applying a +20 v o l t  

input  p u l s e  o r  manually c l o s i n g  t h e  switch S2, -the thy- 

r a t i o n  was f i r e d  t o  discharge t h e  capac i to r  C3 through 

the primary o f  t he  pu l se  t ransformer.  A p o s i t i v e  15 XV 

was generated a t  the  secondary and applied t o  t h e  t r i g g e r  

e l ec t rode  of the spark gap switch.  The low inductance, 

coax ia l  capac i to r  C1 was charged t o  -40 kV. When 31 

f i r ed ,  the source gap GI was overvol ted and broke down 

dumping t h e  energy s t o r e d  i n  C1. I n  order  t o  minimize 

the  discharge durat ion,  the  c i r c u i t  inductance was kept 

small by us ing  s h o r t  lead lengths  and the coaxia l  capaci-  

t o r  des ign ,  

A c r o s s  s e c t i o n a l  view of the  spark gap switch which 

was mounted d i r e c t l y  on t h e  capac i to r  s t r u c t u r e  i s  shown 

i n  F ig .  1 9 .  The hollow e lec t rode  conta in ing  t h e  coaxia l  

t r igge r  was held  a t  ground p o t e n t i a l  while the  s o l i d  e lec-  

t r o d e  was at -40 kV when the capac i to r  was charged. Thus, 

the  +15 kV t r i g g e r  p u l s e  was very e f f e c t i v e  i n  producing 

a rap id  breakdown. The gap was p ressur i zed  with dry  n i-  

t rogen t o  provide a c o n t r o l l e d  i n e r t  atomosphere having 

repea tab le  d ischarge  c h a r a c t e r i s t i c s .  Changing p ressu re  

a l s o  provided a simple means of cont inuously changing 

breakdown vol tage  without having t o  change the gap 

spacing. When one source was f i red ,  the  l a r g e  magnetic 

f i e l d s  produced induced t r a n s i e n t s  i n  the  c i r c u i t r y  of 
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Fig. 19. - Pressurized Spark Gap Switch. 
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t he  o the r  source which tended t o  cause a premature d i s -  

charge. Such e r r a t i c  behavior was prevented by maintain-  

ing  a higher p ressu re  on the  switch gap of the source t o  

be f i r e d  second. 

Upon e x c i t a t i o n  by the spark source the  f luorescen t  

dye absorbed i n  t h e  u l t r a v i o l e t  and blue,  and emitted i n  

t h e  green* i n  less than  sec .  A two l e n s  camera 

system was used t o  record  the  images a t  a magnif icat ion 

of 25X.  The c h a r a c t e r i s t i c s  o f  the o b j e c t i v e  l e n s  deter- 

mined t h e  working d i s t a n c e  and l i g h t  ga ther ing  capac i ty  

of the system while  performing a small magnif icat ion.  

The major p o r t i o n  o f  t h e  magnif icat ion was provided by 

t h e  reimaging l e n s  which c o l l e c t e d  a l l  the  l i g h t  gathered 

by the ob jec t ive .  Although t h e  fastest  negat ive  f i l m  

a v a i l a b l e  was used, t h e  i n t e n s i f i c a t i o n  process  was re- 

qui red  t o  inc rease  image c o n t r a s t  f o r  the  sake of e a s i e r  

readout .  

C.  Data Acquisit ion: Conditions and Procedure 

The e thyl  a lcohol  conta in ing  f l u o r e s c e i n  w a s  p res-  

su r i zed  w i t h  d ry  n i t rogen  and i n j e c t e d  at  room tempera- 

t u r e .  Flow ra te  was measured by weighing the  supply tank, 

and pressure  was measured immediately upstream of the  

nozzle .  The s w i r l  atomizer which was nominally rated at  

0.75 gallon/hour at  100 ps ig  f o r  f u e l  o i l  had a minimum 

o r i f i c e  diameter of 0.009 i n .  Since t h e  o r i f i c e  dQes not 

*See Fig.  D2 O f -  Appendl-x.iD'hr',bhe specbra1 *charac- 
3 < I  I 

, .  t e r i s t i c s .  ' ,  I , . ' <j.i' I, I ' 
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run  f u l l  but has an a$r core,  double-exposure photographs 

were taken t o  determine the mean velocAty 'bf  the l i q u i d  

c o n e ' a s  > i B  errlergedc Figure 2Q.*shows a sepfes of sbch pho- 

tographs,  and the measured sheet v e l o c i t 3 e s  and. 

are shown i n  Fig. 21. The spray cone angle  a t  the  o r i f i c e  

was determined by the  divergent  s e c t i o n  i n  the  nozzle  o r i -  

f i c e ,  and remained e s s e n t i a l l y  constant  a t  6 8 O  over t h e  

range o f  p ressu res  from 25 t o  100 ps ig .  

I n  order  t o  determine the  e f f e c t  of the  exhaust f a n  

on t h e  spray motion, average a i r  v e l o c i t i e s  due t o  the  

f a n  alone were measured w i t h  a hot wire  anemometer. The 

data are p l o t t e d  i n  F ig .  22, tvhioh, shows'.thatbhhe Pan v8- 

l o c i t y  was nea r ly  constant  and l e s s  than  24 i n , / s e c  over 

t he  range of a x i a l  d i s t a n c e s  where spray  measurements were 

made. T h i s  v a r i a t i o n  of  a i r  v e l o c i t y  wi th  d i s t ance  w a $  

used i n  t h e  i l l u s t r a t i v e  s i n g l e  drop c a l c u l a t i o n s  pre- 

sented  i n  Chapter I. 

Figure 23 i l l u s t r a t e s  the,sampling p o s i t i o n s  which 

were used. Each numbered sampling s t a t i o n  corresponds t o  

the f i e l d  viewed by t h e  camera and was recorded on 4 by 5 

8heet f i l m .  After: the zero  p o s i t i o n  was estaSjlPshed by 

Viewing ,the nozzle  through tshe camera the  nozzle< was moved 

t b  o t h e r  p b s i t i o n s  by a t rauers , ing mechanism c o n s i s t i n g  of 

three perpendicular  micrometer screws equipped w i t h  d i a l  

i n d i c a t o r s .  Table I X  summarizes the  condi t ions  which were 

photographed and analyzed. 
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Ap = 25 p s i  

Ap = 40 ps i  

Fig. 20. - Double exposure photographs of the spray 
cone for a range of inject ion pressures. tI = 
10 ys (25x1. 
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Ap = 55 p s i  

Ap = 100 p s i  

Fig. 20. - Concluded. 
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Cross Section of the Orifice 
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10 20 40 60 80 100 
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Fig. 21. - Flow Characteristics of the Swirl Atomizer. 
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/ Sampling volume at  
each numbered station 

z 

2.125 

7- 
0.160 

1.250 

.625 

.375 

!Cangent t o  spray 
cone a t  the orifice ---- 

z = 0 for nozzle 
centered vertically 
i n  camera's f ie ld  
of view (a dimen- 
sions i n  inches) 

Fig. 23. - Sampling Geometry. 
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T A B L E  I X .  - S A M P L I N G  C O N D I T I O N S  
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Data were taken  i n  the following manner. The rOom 

, 

, 

was darkened and f i l m  exposure was determined by t h e  f lash  

sequence once the  f i l m  holder  was opened. Bolaroid 3000 

f i l m  was used t o  provide immediate drop photographs which 

guided t h e  choice of sampling parameters f o r  a p a r t i c u l a r  

data set.  The axial  coordina te  nea res t  the nozzle  was 

s e l e c t e d  t o  roughly approximate t he  su r face  of formation, 

i . e . ,  breakup was n e a r l y  complete. Since t he  l i g h t  sheet 

was s o  t h i n ,  any v8 component of  v e l o c i t y  perpendicular  

t o  it tended t o  c a r r y  a d rop le t  i n t o  o r  out of t h e  sam- 

p l i n g  volume between f l a s h e s .  Therefore, tI was kept 

a t  a minimum cons i s t an t  wi th  t h e  requirement of image 

separa t ion  f o r  most of the  drops.  The f i l m  processing in-  

cluding t h e  i n t e n s i f i c a t i o n  was a very lengthy opera t ion  

so  it was desirable t o  record  as many sets of double-ex- 

posure samples on the same f i l m  as p o s s i b l e  without super- 

p o s i t i o n  of images. Roughly equal  numbers of drops were 

photographed a t  each l o c a t i o n  by holding the  number of 

f i l m s  cons tant  and a d j u s t i n g  t h e  number of samples per  

f i l m .  T h i s  p r a c t i c e  could not  be followed a t  t h e  ou te r  

s t a t i o n s  s i n c e  drop d e n s i t y  was so  low that  the  number of 

samples requ i red  t o  accumulate the  same t o t a l  number was 

p r o h i b i t i v e .  

The in tens i ty- t ime  t r a c e  f o r  each pair of flashes 

was monitored v i s u a l l y  on the osc i l loscope .  A t  l eas t  

t h r e e  t r a c e s  were photographed a t  each s e t t i n g  and pro- 

vided the  exact va lues  of tI l i s t e d  i n  Table I X .  I n  
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the rare instance of a source misfire, the film was dis- 

carded and new exposures were made. 

Sample photographs are given in Fig. 24, for a range 

of conditions. The number of samples and interval be- 

tween exposures vary from picture t o  picture as noted. 

It can be seen that the relative concentration of dif- 

ferent sizes varies widely with position; and that magni- 

tude and direction of drop velocity differ not only from 

one size to another, but for similar sizes at the same 

location. 

D. Data Reduction 

The raw records consisted of over 200 films each of 

which had up to 200 pairs of drop images. For the sake 

of consistency and speed an automated method of data re- 

duction such as the flying spot scanners that Were used in 

previous studies of drop size (Ref. 18 and 19) was desir- 

able. However, in the present study the additional re- 

quirements associated with velocity measurement demanded 

a much more sophisticated analyzer. Pairs of images had 

to be identified and the distance between image edges 

along the path of motion had to be measured. 

which digitize film according to discrete density levels 

are available. An appropriate computer program must then 

be written to search the digital "picture" stored in the 

computer memory, associate Paris, and determine sizes and 

Scanners 

displacements. Since the scanner was prohibitively ex- 

pensive, and the generatzon of a suitable program was, 
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i t s e l f ,  a major undertaking; the  only recourse  was t o  d i -  

r e c t ,  manual measurement. 

Microcard readers were used t o  p r o j e c t  t h e  f i l m s  a t  

a d d i t i o n a l  magnif icat ions of 16.3 t o  18.1 times, asd mea- 

surements were made d i r e c t l y  on the  screen  wi th  t r a n s-  

parent  s c a l e s  and p r o t r a c t o r s .  A t r ansparen t  g r i d  of 

numbered 1/2 i n c h  squares  was placed over t h e  negat ive  

before  i n s e r t i o n  i n  t h e  reader. One g r id  square a t  a 

t ime apperaed on the  reader screen  and u s u a l l y  contained 

less than  5 o r  6 pairs.  Figure 25 shows a schematic view 

of  the  reader screen  w i t h  the  measured q u a n t i t i e s  l abe led  

on one d rop le t  pair .  Thus, p o s i t i o n  re fe rences  were 

a v a i l a b l e  on each f i l m ,  and dup l i ca te  counts were avoided. 

Rather than  immediately ca tegor iz ing  s i z e s  or dis-  

placements by using s p e c i a l l y  graduated sca les ,  l i t t l e  

a d d i t i o n a l  t ime was requi red  t o  record  the two measure- 

ments t o  t h e  nea res t  mi l l ime te r  on the screen.  Thfs gave 

complete freedom t o  choose catagory boundaries la ter  i n  

the  a n a l y s i s .  I n  a d d i t i o n  t o  the two l i n e a r  measurements, 

the  number of  the g r i d  square, the  angle  Q, of t he  t ra-  

j e c t o r y  w i t h  t h e  v e r t i c a l  t o  the nea res t  2 degrees,  and 

an image q u a l i t y  i n d i c a t i o n  o f  1 o r  0 were recorded f o r  

each pa i r .  The q u a l i t y  f a c t o r  gave the  measurer a means 

of d i f f e r e n k i a t i n g  between sharp pa i rs  and those  f o r  which 

measurement was uncer t a in  due t o  such t h i n g s  as low con- 

trast  o r  poor q u a l i t y  of one member of the  pa i r .  A t o t a l  

of more than  32,,000 pairs oft drop.images were measured. 



, Grid number 

104 

Fig. 25. - Schematic of the Readout Situation. 



The data were then  t r a n s f e r r e d  t o  punched cards  i n  a 

format which contained the f i l m  i d e n t i c a t i o n ,  g r i d  loca-  

t i o n ,  s i z e ,  displacement, angle,  and q u a l i t y  f a c t o r  for 

each drop. 

which app l i ed  scale f a c t o r s  and s o r t e d  the g r i d  areas 

according t o  larger f i l m  reg ions .  An output card  was 

punched f o r  each drop which had f i l m  number, g r i d  area, D, 

1x1, vz, vr, (p, f i l m  region, and q u a l i t y .  T h i s  informa- 

t i o n  was t h e  b a s i c  raw data for the  es t imat ion  of 

ca tegor iza t ion ;  and spray p r o f i l e  a n a l y s i s  i n  terms of 

var ious  mean q u a n t i t i e s  obtained by weighted summations. 

These cards  were the input  data t o  a program 

fB by 

I 
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Chapter I'V 

ANALYSIS OF THE SIZE-VELOCITY DATA 

The size-velocity data which are presented consist 

of two kinds of spray information. First, the measure- 

ments at the shortest downstream distances, which lie 

near the surface of formation, were made over a small 
range of injection pressures'to provide some inq&ght*into 

the nature of the initial spray density function, f,. 

This information is a particular answer t o  the spray de- 

scription problem. Second, the data at downstream con- 

ditions indicate the propagative behavior which a spray 

transport theory must be able t o  reproduce. 

Underlying objectives of the data presentation are 

t o  show the comprehensive and fundamental qualities of 

the density function f, and the vital role of drop ve- 

locity as a random variable. In addition, the local 

spatial variations which the data exhibit are emphasized 

t o  show why care must be exercised when constructing av- 

erage quantities t o  represent an entire spray. 

The two ways in which the data are handled parallel 

the two approaches t o  the spray propagation problem dis- 

cussed in Chapter I1 - characterization in terms of the 
density function f and reduction t o  local mean quan- 

tities related t o  mass, momentum and energy. While, in 

principle, the density function has the advantages of 

being compact and complete; it is a difficult practical 



matter to find a reasonably simple equation to fit the 

data. 

solved, no theoretical guide to the functional form is 

available; and the behavior of the physical processes 

Since the spray formation problem remains un- 

which generate f remains obscure. On the other hand, 

the physical picture in terms of mean quantities is some- 

r due to the simibarities with tmditional gas 

The problem here is that many separate quan- dynamics. 

tities must be specified to provide a complete chgrac- 

terization. 

The discussion begins with an outline of the types 

of operations performed on the data. Next, thesoverall 

character of the data is presented with samples of the 

measurements in their most elementary form. Represen- 

tations of the general density function fB and func- 

tions derived from i.t. aPe"follo.wed by the comp2ementary 

picture in terms of mean values. Finally, source terms 

which appear in the equations of change are given based 

on the available single drop expressions for the trans- 

port rates. 

A. Operations Performed on the Data 

1. Construction of Density Functions: The density func- 

tion fg is estimated by catggorizing the size-velocity 

1Q7 

data and applying an approximate form of Eq. ( 2 . 2 ) l t a  give 

values of the function at the category means: 
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r = rmi-1 
i i 

where : 

ni jk = the number of drops in the ith size, jth axial 

velocity, and kth radial velocity categories at 

a position x‘ 

Vs 
E = number of samples at a given condition 

= the size of the sampling volume 

= indicates the mean value in a category A 

The category boundaries used increase by a constant mul- 

tiple so that the fractional change in D o r  v is a 

constant. For  any drop variable: 

and the geometric mean was used: 

Table X lists the values chosen for my and the resulting 

boundaries and means. 

Once values for fB are available any conditional 

such as f(Dlv,), marginal such as’ f s  o r  weighted den- 

sity function such as fF can be calculated by performing 

summations over the categories to approximate the inte- 

grals over continuous functions defined in Chapter 11. 

A one-dimensional density function fT may be defined 

by integrating . Cg ovkr adcmss sect;;i;on. ;,In cyllndribal 

coordinates with equal.’ irkdial increment.s. the’ Lntbgral 5s 

approximated by a sum over’ the 2 radial stations: 
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c o c u r l a a c o m o o m a c o a r l c u a  

cum m c o c o c u a F m d m t - m m L l - l a  . . . . . . . . . . . . . . . .  
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(4 .4 )  

2. Calculation of Mean Quantities 
The mean densities and fluxes of mass, momentum and 

energy given as weighted integrals over f in Table V 

may be calculated by summation over the size-velocity 

categories. They may also be calculated by direct sum- 

mation over the raw data treating each drop separately. 

Categorization greatly reduces the number of calculations 

involved since all drops in a category are considered to 

have the corresponding mean size and velocity. Both 

methods were used and the resulting means agreed within 

a maximum deviation of 10%. 

usually produced slightly higher values indicating a 

smoothing influence and heavier weighting by the large 

categories. 

The categorized computation 

In addition t o  the physical means from Table V, 

the related mean diameters from Eqs .  ( 2 . 9 )  and (2.10); 

and statistical moments were calculated. Three particu- 

lar statistical quantities which indicate the form of the 

density fuhction are'the coefficient of variation: 

skewness: 
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I 

correlation: 

I 

( 4 . 7 )  

These dimensionless quantities which are independent of 

the absolute magnitudes of the density functions indi- 

cate the degree of dispersion about the mean, the degree 

of asymmetry with respect t o  the mean, and interdepen- 

dence of pairs of random variables. Such moments about 

the mean are closely related to the peculiar quantities 

such as b2xI and n- appearing in the substantial forms 

of the spray equations (Eqs. (2.11a) to (2.13~~)). 

I 

* 

=S 

The mean quantities were numerically integrated 

over the cross section to obtain average values at a 

given downstream distance. These values correspond to a 

one-dimensional description of the spray. 

3. Spatial Variations and Sample Size 

All manipulations are carried out in cylindrical 

coordinates with the origin at the nozzle orifice. No 

8 information is available so the treatment is two- 

dimensional in r and z. For a given z, the data are 

analyzed at equal radial increments of 0.080 inch begin.- 

ning at 0.040. These divisions result from dividing each 

sampling station in half vertically and choosing r at 

the midpoint of each half (see Fig. 23). 

* The ensemble averages in each case may be weighted 
as defined in Eq. (2.7). 
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Many of the  p l o t s  presented i n  t h i s  chapter  use the  

r a t i o  of radial t o  a x i a l  coordina tes  as the  absc i s sa .  

This  i s  t h e  tangent  of t h e  angle  (p, and i s  approximately 

equal t o  (D f o r  the  small angles  used. Plots of the 

data v e r s u s , ) s o l i d :  angle .  o r  :radbus a lone  usua l ly  dol  nbt 

superimpose the data t o  a g r e a t e r  degree.  Although t h e  

spray approximates a po in t  source i n  the  beginning, t he  

co l l aps ing  o f  t h e  l i q u i d  cone and i n t e r a c t i o n  w i t h  t h e  

gas warp the  flow propagat ion c h a r a c t e r i s t i c s  toward a 

c y l i n d r i c a l  geometry. 

The radial component of t h e  mass average v e l o c i t y  i s  

o f t e n  less  than  20% of t h e  a x i a l  component* i n d i c a t i n g  

tha t  %he radial  con t r ibu t ions  t o  z momentum and energy 

f l u x  terms such as p s < ~ z ~ r ) N  and ps<vzvg>M a r e  

small compared t o  pS<vg>, and pS<v$>,. The spray den- 

S i t Y  ps i s  always a s t rong  func t ion  of r and z; and 

thus,  sharply defined a x i a l  f l u x  p r o f i l e s  e x i s t .  

The spat ial  r e s o l u t i o n  a t t a i n a b l e  i s  in t ima te ly  

l inked w i t h  sample s i z e .  For a given t o t a l  number of 

drops measured a t  a p a r t i c u l a r  condi t ion,  cont inual  r e -  

duct ion  i n  the  s i z e  of t h e  sample volume considered about 

a coordina te  leads t o  inc reas ing  f l u c t u a t i o n s  i n  spray 

p r o p e r t i e s  from po in t  t o  p o i n t .  T h i s  s i t u a t i o n  i s  

Exceptions t o  t h i s  occur a t  combinations of small * 
z ,  l a r g e  r, and high A p  where the radial component 
exceeds 50% of the a x i a l  component. 
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analogous. . to the breakdown& of the continuum’ t reatment  of 

gas dynamics as’ the densety i s  loweredi,or,,khe spatial  

region  considered becomes very small. However, i n  the 

case of sprays, the  number dens i ty  i s  always small com- 

pared t o  usual  molecular number d e n s i t i e s ,  and the spray 

d e n s i t y  funct ions  must be viewed as rep resen t ing  the  en- 

semble behavior as d i s t i n c t  from l o c a l  temporal behavior.  

The same s i t u a t i o n  e x i s t s  w i t h  r e spec t  to the number of 

s i z e- v e l o c i t y  ca tegor ies  chosen f o r  c l a s s i f i c a t i o n .  A 

given sample s i z e  conta ins  a f ixed  amount of information, 

and a t tempts  t o  e x t r a c t  more and more d e t a i l  even tua l ly  

lead t o  a breakdown i n  t h e  es t imat ion  process .  * 

For t h e  spat ia l  g r i d  chosen, the  sample s i z e s  range 

from approximately 1800 t o  100. Means based on summation 

over the  sample gave reasonably smooth r e s u l t s ,  and den- 

s i t y  func t ions  presented a t  a given l o c a t i o n  us ing  the 

ca tegor ies  of Table X are l i m i t e d  t o  b i v a r i a t e  marginals 

such as f(D,v,) and f (D ,v r ) .  Thus, t h e  d e t a i l  achieved 

repre‘sents a u s e f u l  compromise wi th in  t he  p r a c t i c a l  re- 
.-r 

s t r a i n t s  on sample s ize. .?* 8 ,  

Two sets of ca lcu la t ions ,  one using a l l  drops re- 

gardless of q u a l i t y  f a c t o r  and t h e  o t h e r  using only those  

w i t h  a q u a l i t y  f a c t o a  of 1, ‘show the fol lowing r e s u l t s .  

The number of samples must become l a r g e  as O r  be- * 
comes small as ind ica ted  by Eq. ( 2 . 2 ) .  

** For a d i scuss ion  of a binomial model f o r  es t imat ing  
confidence l i m i t s  f o r  given sample s i z e s  see  Ref. 1 9 .  
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Quant i t i e s  such as mean v e l o c i t i e s  and r e g r e s s i o n  ourves 

which do not  depend on the  abso lu te  magnitude of the spray 

dens i ty ,  d i f f e r  by only a f e w  percent  f o r  the two cases .  

The q u a n t i t i e s  dependent on ps show the same t r e n d s  but 

d i f f eP  i n  magnitude by an amount propor t ional  t o  the f r a c -  

t i o n  of 0 q u a l i t y  drops i n  the sample (usua l ly  20-30$). 

An obvious ambiguity e x i s t s  as t o  the p r e c i s e  value of 

t h e  e f f e c t i v e  sampling volume. T h i s  l,s a shortcoming 

common t o  a l l  photographic sampling, and the double- 

exposure f luorescen t  technique has not  e n t i r e l y  overcome 

it .  Thus, absolu te  va lues  a r e  sub jec t  t o  some uncer- 

t a i n t y  but t r e n d s  and means appear t o  be r e l i a b l e .  Data 

which inc lude  t h e  e n t i r e  sample are presented  u n l e s s  

otherwise noted. 

4. Source Terms 

The mean source q u a n t i t i e s  (Table Vb) are d i s t i n -  

guished from the h luxes  and d e n s i t i e s  (Table Va)  by t h e i r  

dependence on the  t r a n s f e r  r a t e s , a ;  94 and 5. Conse- 

quent l y ,  they  a r e  not d i r e c t l y  ca lcu lab le  from the. raw 

data without the  a d d i t i o n a l  s p e c i f i c a t i o n  of the r a t e  de- 

pendence on D, - v and TL. The s i n g l e  drop expressions 

of Chapter I (Eqs.  (1.1) t o  ( 1 . 7 ) )  are useh t o  f u r n i s h  

l o c a l  p r o f i l e s  of vapor iza t ion  rate, momentum t r a n e f e r  t o  

the gas, and the assoc ia ted  energy t r a n s f e r s  f o r  an as- 

summed d rop le t  temperature.  Required values of a i r  ve- 

l o c i t y  are i n f e r r e d  from small d rop le t  behavior and a t-  

tendant  u n c e r t a i n t i e s  a r e  discussed.  
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B. Overal l  Character of the Data 

The most elementary p r e s e n t a t i o n  of  b i v a r i a t e  data 

i s  a d i r e c t  p l o t  of the  raw dags i n  the s i z e- v e l o c i t y  

plane.  Such a s c a t t e r  diagram i s  shown f o r  vz and D 

i n  Fig.  26. Each of the 1400 drops i n  the sample i s  rep-  

resen ted  by a po in t  r e s u l t i n g  i n  much over- plo t t ing .  The 

d e n s i t y  of the p o i n t s  i n  any a r e a  of the plane s p e c i f i e d  

by p a r t i c u l a r  ranges of vz and D i s  p ropor t iona l  t o  

the frequency of  f ind ing  drops having those  p r o p e r t i e s  a t  

t h i s  p a r t i c u l a r  l o c a t i o n  i n  the spray. The po in t  d e n s i t y  

i s  a l s o  an estimate of value of the  d e n s i t y  func t ion  

f(D,v,) f o r  given ranges of the independent va r i ab les .  

Sheet v e l o c i t y  and the mean va lues  of s ize* and ve- 

l o c i t y  f o r  t h i s  condi t ion  are l i s t ed .  The curve i s  the 

c a l c u l a t e d  mean v e l o c i t y  a t  a given s i z e :  <.,I D>. Note 

that  a t  t h i s  l o c a t i o n  i n  the  densest  p o r t i o n  of the  newly 

formed spray, the spread i n  v e l o c i t i e s  of similar s i z e d  

drops i s  large. Much of the  drop populat ion i s  s t i l l  so 

young that not enough t i m e  has elapsed f o r  the gaseous 

environment t o  g r e a t l y  change t h e i r  p r o p e r t i e s  by vapor- 

i z a t i o n  o r  dece le ra t ion .  Only a moderate depression of 

the r e g r e s s i o n  curve i s  observed a t  the small s i z e s .  The 

s ta te  of the  spray, which i s  far  from equi l ibr ium with the  

* I n  the o f t e n  used n o t a t i o n  of Eq. (2.9), <D> = D10 

and <D3> = D30. 
1/3 
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gas, i s  the i n t e g r a t e d  r e s u l t  of randomly d i r e c t e d  drop- 

l e t  b i r t h s  d i s t r i b u t e d  throughout the formation region .  

Diss ipa t ion  of k i n e t i c  energy occurs i n  the breakup proc- 

e s s  as evidenced by f a c t  that  the v e l o c i t i e s  of the  large 

drops are less t h a n  shee t  v e l o c i t y .  

The corresponding diagram f o r  radial v e l o c i t y  a t  t he  

same condi t ion  i s  shown i n  Fig.  27. Drops that are gen- 

e r a t e d  i n s i d e  the hollow l i q u i d  sheet c r i s s c r o s s  the spray 

a x i s  w i t h  a range of v e l o c i t i e s .  The mass average veloc- 

i t y  i s  ohly s l igh t ly  p o B i t i v & a s ^ a r e  the expected va lues  

of radial  v e l o c i t y  which i h c r e a s e  slowly w i t h  s i z e .  

F igures  28 and 29 p o r t r a y  t h e  markedly d i f f e r e n t  be- 

havior  observed toward the  ou te r  edges of the  spray and 

a t  downstream p o s i t i o n s  where t h e  spray i s  less dense. 

Under t h e s e  condi t ions  s u f f i c i e n t  t i m e  has elapsed f o r  

the  gas and t h e  drops t o  s t r o n g l y  i n t e r a c t .  The s m a l l e s b  

drops which are the  most p l e n t i f u l  have nea r ly  come to 

v e l o c i t y  equi l ibr ium with t h e  gas, while the largest drops 

which conta in  a large p o r t i o n  of the spray mass, propagate 

w i t h  small modif icat ion.  at t h i s  radial loca t ion ,  the  

radial  v e l o c i t i e s  of drops  l a r g e r  than  40p a r e  predomi- 

n a n t l y  p o s i t i v e  w i t h  only a few medium-sized o f f shoo t s  

and the  very small drops showing inward motion. 

The two cases  j u s t  i l l u s t r a t e d  by the  two pairs of 

s c a t t e r  diagrams l i e  near the  oppos i te  ends of t h e  ob- 

served spectrum of spray behaivor.  A continuous vaki- 

a t i o n  e x i s t s  as a func t ion  of pos i t ion ,  but  the l i m i t i n g  
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Fig. 27. - Typical vr - D Scatter Magram for a Location Near the Axis of a Newly Formed Spray. 
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cases of nearly uniform sizes traveling at either the in- 

jection velocity or air velocity are never closely ap- 

proached. 

In general, the allowable ranges of drop variables 

are, limited in the size-velocity plane as shown schemati- 

cally in Fig. 30. Two cases are distinguished. The 

first, where injection velocity is greater than gas ve- 

locity, is the condition existing in this investigation 

while the second is for injection into a higher velocity 

gas stream. The stability boundaries indicated are of 

the type obtained for the threshold of aerodynamic break- 

up (Refs. 20, 21, 22, 36), and are of the form: 

b WebaRe = CT (4.8a)* 

or for given liquid and gas properties: 

D I ~  - ;In = Constant (4.8b) 

The intersection of the line of constant injection veloc- 

ity with the stability boundary does not necessarily de- 

termine the maximum allowable size since larger drops 

formed with lower initial velocities are stable. On the 

other hand, factors such as turbulence condition8 in the 

liquid or the geometry of sheet breakup may determine the 

scale of the drop formation such that aerodynamic 

* A common expression (Ref. 22) uses b = 0, a = 1 
and a 
velocity is suddenly or gradually applied. Maximum Weber 
numbers observed in the present investigation were less 
than 5 indicating that at the locations sampled further 
aerodynamic breakup was unlikely. 

CT of 13 to 22 depending on whether the relative 
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Fig. 30. - Schematic Plots of Allowable Spray Regimes 
in the Velocity-Size Plane. 

DIE - sin = constant 
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breakup 
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s t a b i l i t y  i s  a secondary cons idera t ion .  A s  the  spray  

propagates,  drag sh r inks  t h e  v e l o c i t y  range toward 2, 

un less  large g r a d i e n t s  i n  gas p r d p e r t i e s  exis t  w i t h  a t-  

tendant  sh i f t s  i n  s t a b i l i t y  boundaries.  

2. I n f e r r e d  Values of  Gas Veloci ty  

The va lues  of g i n s i d e  the  spray  are dependent on 

the  momentum t r a n s f e r r e d  from t h e  l i q u i d  t o  the  gas by 

drag and a l s o  vapor iza t ion .  A s  mentioned i n  Chapter 1x1 

the mean exhaust f a n  v e l o c i t y  i s  very low i n  the  sampling 

reg ion  and r e p r e s e n t s  an approximate lower l i m i t .  Under 

spraying condit ions,  a i r  i s  en t ra ined  i n  the  flow os 

drops so tha t  radial  and a x i a l p r o f i l e s  e x i s t  (Refs. 

68, 6 9 ) .  Assuming that the smallest drops a r e  t r a c e r s  

of t h e  gas motion as ind ica ted  by s i n g l e  drop ca lcula-  

t i o n s ,  t h e  drop v e l o c i t y  data should be equivalent  t o  

gas v e l o c i t y  information as s i z e  approaches zero.  

Inspect ion  of Figs.  26 t o  29 immediately r e v e a l s  a 

problem. There i s  a spread i n  the va lues  of drop veloc-  

i t y  even a t  t h e  smallest s i z e s ,  and so a i r  v e l o c i t i e s  

estimated from the rninimum;xmvelgpe 

the same as those  estimated from the mean value.  Sn the 

case of Figs. 28 and 29, t he  d i f fe rence  is not great, but 

the two va lues  of up d i f f e r  i n  s ign .  Since a i r  flows 

i n t o  the  spray from the surroundings, a negat ive  

seems most reasonable.  

f',theg )data are not  

up 

For the  dense spray condi t ions  (Figs .  26, 27) t he  

d i f f e r e n c e  between t h e  two estimates i s  larger and the 
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